
Mr. Shakespeare, Meet Mr. Tucker, Part III

Charles Nicholas

Overview of Research in the DREAM Lab

CMSC 491/691 Spring 2021

April 21, 2021

1 / 26

DREAM Lab

Discovery, Research, Exploration, and Analysis of Malware
Home of the CyberDawgs https://umbccd.umbc.edu/
Home of the Malware Research Group http://groups.google.com/

2 / 26

https://umbccd.umbc.edu/
http://groups.google.com/

Areas of Work

Methods for Detecting and Comparing Executable Binaries, with
Applications to Clustering
Tensor Algebra Methods for Static (and Dynamic) Malware Analysis
Evaluation of Malware Classifiers (for another time)

3 / 26

Comparing BLOBS

Comparing large binary objects can be tricky and expensive. We describe a
method for comparing such objects, based on ideas used for data
compression, that is both fast and effective. We implemented the LZJD
distance metric, and ran experiments on data that represent areas of interest
to the cyber community. 1

1If you don’t want to listen to the first half of the talk, please see Raff, E., Nicholas,
C., 2017. "An alternative to NCD for large sequences, Lempel-Ziv Jaccard Distance. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD 2017.

4 / 26

Normalized Compression Distance

Li et al. [5] define a function C (x), which returns the length of string x
when compressed, we get the NCD distance (1), where C (xy) is the length
of the string that results when strings x and y are concatenated and then
compressed.

NCD(x , y) =
C (xy)−min (C (x),C (y))

max (C (x),C (y))
(1)

(Technically, the string x and the compression algorithm are both parameters
of C , but we for now we assume that some compression algorithm has been
chosen, and we use the shorter, more convenient notation.)

5 / 26

NCD: Advantages and Disadvantages

+ Intuitive: easy to explain, even with gestures
+ Easy to implement: even with a few lines of shell script
+ Versatile: works on many kinds of input objects, as long as they’re not

already compressed too much
– Not a good fit: compression algorithms are usually not designed with

similarity functions, especially NCD, in mind
– Inefficient: compression is relatively expensive, and the object C (ab) is

used once and discarded
– Not a distance metric: identity, symmetry, and triangularity are not

preserved

6 / 26

Observations on NCD

Many compression algorithms make use of the Lempel-Ziv (LZ)
technique for creating a compression dictionary of previously seen
sub-strings[8, 9]
We do not care about the actual compressed output of any compression
algorithm when computing NCD, just the length of that output
Other things being equal, we prefer a distance metric (which satisfies
the properties of identity, symmetry, and triangularity)

7 / 26

Lempel-Ziv Jaccard Distance

Given a string a, we can compute its compression dictionary LZSet(a) in
reasonable (O(n)) time using Algorithm LZSet (defined in a moment)
Given two strings a and b to be compared, we define the Lempel-Ziv Jaccard
Distance (LZJD) metric as the Jaccard similarity between LZSet(a) and
LZSet(b)

8 / 26

Lempel-Ziv Jaccard Distance, LZSet Algorithm

Algorithm 1 Simplified Lempel-Ziv Set
1: procedure LZSet(Byte sequence b)
2: s ← ∅
3: start ← 0
4: end ← 1
5: while end < |b| do
6: bs ← b[start : end]
7: if bs 6∈ s then
8: s ← s ∪ {bs}
9: start ← end
10: end if
11: end ← end + 1
12: end while
13: return s
14: end procedure

9 / 26

Lempel-Ziv Jaccard Distance

The Jaccard similarity between two sets A and B is defined as:

J(A,B) =
|A ∩ B|
|A ∪ B|

(2)

and we define LZJD for two strings x and y as:

LZJD(x , y) = 1− J(LZSet(x), LZSet(y)) (3)

Since the metric space properties (identity, symmetry, and triangularity) hold
for Jaccard in general, they hold for LZJD specifically.

10 / 26

Min-Hashing

Jaccard similarity as defined in Equation (3) works well for small LZsets, but
the set intersection operation (O(n log n)) is a little too slow. There are
approximation methods for set intersection, and therefore LZJD, which are
more efficient.
Let h(a) be a hash function that returns an integer given some input string
a, and hmin(A) = mina∈A h(a) returns the minimum hash value over every
object a in a set A. Then it has been shown ([1]) that

J(A,B) = P(hmin(A) = hmin(B))

That is, for two sets A and B , the Jaccard similarity of A and B is equal to
the probability that the min hash values over the sets A and B are equal.

11 / 26

So What? Applications of LZJD

Given a fast and effective similarity metric, several tasks become easier:
malware triage - have we seen anything like this before?
malware detection - any malware in memory now?
malware clustering - any new malware families today?
forensics2

2If you don’t want to listen to the rest of the talk, please see Raff, E., Nicholas, C.,
"Lempel-Ziv Jaccard Distance, an effective alternative to ssdeep and sdhash", Digital
Investigation 24 (2018) pages 34-49.

12 / 26

Forensics tools: ssdeep and sdhash

Forensics questions include
can we rebuild this corrupted file?
any illicit materials on this computer?
are there other versions of this file?
In computer forensics, fuzzy similarity is often computed using either
ssdeep, or sdhash.
The ssdeep program is fast, but brittle. The sdhash program is slower,
but handles more file types, and is better at finding more complicated
patterns

13 / 26

Comparing ssdeep, sdhash, and LZJD

When comparing two files, LZJD is comparable to ssdeep in speed, and
much (orders of magnitude) faster than sdhash.
When comparing two files, the LZJD score can be interpreted as a lower
bound on how similar the binary contents of two files are. The scores
from ssdeep and sdhash have no such interpretability.
LZJD is better at matching a file fragment with its source file (i.e., the
source file receives the highest matching score compared to all other
files) compared to both ssdeep and sdhash. (See the paper for table
and graphs.)
The digest size, or "thumbnail" generated by LZJD is of fixed size,
making index construction simpler.

14 / 26

Conclusions and Next Steps

LZJD gives accuracy and efficiency far beyond NCD
BWMD is even faster than LZJD - a talk for another day In progress:

Clustering malware corpora,
Hierarchical clustering...
Finding "surprises" in systems that are mostly benign?!

15 / 26

Applications of Tensor Decomposition

16 / 26

Objectives

To investigate the use of tensor decomposition in static malware analysis -
on a large scale

Malware analysis is often done "in the small", that is, on one specimen
at a time [7]
We need to do malware analysis "in the large"
Can we use tensor decomposition to gain insight into large collections
of malware?

17 / 26

Building the Tensor

We selected a specific malware family, the well-known Zeus Trojans
(Mohaisen, Alrawi, and Mohaisen [6]), as test subjects.
The tensor X is constructed so that: for each Zeus file i , entry xi ,j ,k is how
many times 4-gram j occurs in decile k of the file. That is,

1 <= i <= 8020, the number of Zeus specimens available to us
1 <= j <= 232, the upper bound on the number of distinct 4-grams.
The actual number of distinct 4-grams of course varies from file to file.
1 <= k <= 10, since we chose to represent the approximate location in
each specimen by dividing each specimen into ten parts of equal length.

18 / 26

Tucker Decomposition from Kolda Kolda and Bader [4]

19 / 26

Sanity Check - Shakespeare

Before trying the Zeus data, we wanted to try a smaller corpus - the
Shakespearean plays. [3]
Using Python packages sklearn (to parse the text data) and tensorDHao
et al. [2] and tensorflow (to do the tensor calculations), in a Jupyter
Notebook, we built the tensor X as described earlier, and ran both HOSVD
and HOOI versions of Tucker.

20 / 26

Plot of First Two Factors from Tucker Decomposition

21 / 26

Tensor and Results

In the Shakespearean tensor X , entry xi ,j ,k is the number of times word
j occurs in Act k of play i . The value of i ranges from 1 to 37, j ranges
from 1 to about 30,000, and k ranges from 1 to 5. The tensor is quite
sparse.
Plotting the first two factors produced by HOOI, HOSVD gave similar
results
We are pleased with the (unsupervised!) clustering of the history plays
at the bottom of the plot.

22 / 26

Research Continues: Update

Malware binaries will have many more terms than Shakespeare does, so
we must be selective.
Only some of the Zeus binaries are unpacked, so focus on those first.

23 / 26

Acknowledgements

This work was supported by a research contract with the Laboratory for
Physical Sciences, and a gift from Cisco
An earlier version of this talk was presented as a poster at the High
Performance Computing and Data Analytics Workshop, September
10-11, 2019.
Email: nicholas@umbc.edu

24 / 26

mailto:nicholas@umbc.edu

References I

A.Z. Broder et al. “Syntactic clustering of the web”. In: Computer
Networks and ISDN Systems 29.8-13 (Sept. 1997), pp. 1157–1166. doi:
10.1016/S0169-7552(97)00031-7.

Liyang Hao et al. “TensorD: A tensor decomposition library in
TensorFlow”. In: Neurocomputing 318 (Nov. 2018), pp. 196–200. doi:
10.1016/j.neucom.2018.08.055.

Phani Teja Kesha. Detection of Malware using Tensor Decomposition.
Tech. rep. UMBC M.S. Writing Project, 2019.

Tamara G. Kolda and Brett W. Bader. “Tensor Decompositions and
Applications”. In: SIAM Review 51.3 (2009), pp. 455–500. doi:
10.1137/07070111X.

M. Li et al. “The Similarity Metric”. In: IEEE Transactions on
Information Theory 50.12 (Dec. 2004), pp. 3250–3264. doi:
10.1109/TIT.2004.838101.

25 / 26

https://doi.org/10.1016/S0169-7552(97)00031-7
https://doi.org/10.1016/j.neucom.2018.08.055
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/TIT.2004.838101

References II

Abedelaziz Mohaisen, Omar Alrawi, and
Omar Mohaisen Abedelaziz Alrawi. “Unveiling Zeus: automated
classification of malware samples”. In: Proceedings of the 22nd
international conference on World Wide Web companion. 2013,
pp. 829–832. isbn: 978-1-4503-2038-2.

Michael Sikorski and Andrew Honig. Practical Malware Analysis. no
starch press, 2012.

Jacob Ziv and Abraham Lempel. “A universal algorithm for sequential
data compression”. In: IEEE Transactions on Information Theory 23.3
(May 1977), pp. 337–343. doi: 10.1109/TIT.1977.1055714.

Jacob Ziv and Abraham Lempel. “Compression of individual sequences
via variable-rate coding”. In: IEEE Transactions on Information Theory
24.5 (Sept. 1978), pp. 530–536. doi: 10.1109/TIT.1978.1055934.

26 / 26

https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

	Compression Based Distances
	Normalized Compression Distance
	Lempel-Ziv Jaccard Distance

	References

