Basic Ray Tracing

CMSC 435/634

Visibility Problem

* Rendering: converting a model to an image

* Visibility: deciding which objects (or parts) will
appear in the image
— Object-order
* OpenGL (later)
— Image-order

e Ray Tracing (now)

Raytracing

* Given
— Scene
— Viewpoint
— Viewplane

e Cast ray from viewpoint
through pixels into
scene

Computing Viewing Rays

Parametric ray

p(t) =e+t(s5—¢€)
Camera frame

€ :eye point

u, U, W : basis vectors
— right, up, backward

 Right hand rule! ' s
Screen position

us = left + (right — left)(i 4+ 0.5) /n,
vs = top + (bottom — top)(j + 0.5)/n,,

— — — — — "’?"
S=€+ uUst +v;0 — dw

':‘1

Calculating Intersections

* Define ray parametrically:
F=é+t (5—¢é)

r = e, +t(sp,—ey) = ex+td,
y = e, +t(sy—ey) = ey+tdy,
z = ez—rt(sz—ez) = e,+1td,

* If(ey, ey, €,)is center of projection and (s, s,, S»)
is center of pixel, then

0 < ¢ < 1: points between those locations

t < 0 : points behind viewer

t > 1 : points beyond view window

Ray-Sphere Intersection

* Sphere in vector form
F)=(F=3)- (F—&) —1° =0
* Ray
pt) =é+td
* Intersection when
f(B(t)) =0

Ray-Polygon Intersection

* Given ray and plane containing polygon
plt)=é+td
f)=n-p—1n-po=0

* What is ray/plane intersection?

—

fFEt) =i (€+td) —7-pp=0

* |s intersection point inside polygon?

Ray-Triangle Intersection

* Intersection of ray with barycentric triangle
p=ée+td=apo+pp1+12 «,B,7>0; a+B+y=1

— Intriangleifa>0,2>0,y>0
— To avoid computing all three, can replace a >0 with f+y<1

boolean raytri (ray r, vector p0O, pl, p2, 1nterval [ty t;])
{
compute t
if ((t <ty) or (t > ty))
return (false)
compute vy
1f ((y < 0) or (y > 1))
return (false)
compute
if ((B < 0) or (B+y > 1))
return (false)
return true

Point in Polygon?

* IsPin polygon?

e Castrayfrom P to
infinity
— 1 crossing = inside
— 0, 2 crossings = outside

Point in Polygon?

* |s Pin concave polygon?

e Castrayfrom P to
infinity
— Odd crossings = inside
— Even crossings = outside

What Happens?

Raytracing Characteristics

e Good

— Simple to implement
— Minimal memory required
— Easy to extend

* Bad
— Aliasing
— Computationally intensive

* Intersections expensive (75-90% of rendering time)
* Lots of rays

Basic lllumination Concepts

* Terms

— lllumination: calculating light intensity at a point (object
space; equation) based loosely on physical laws

— Shading: algorithm for calculating intensities at pixels
(image space; algorithm)
* Objects
— Light sources: light-emitting
— Other objects: light-reflecting
* Light sources
— Point (special case: at infinity)
— Area

Lambert’ s Law

* |Intensity of reflected light related to
orientation

YVYYYYYYY

Y

Y

YY

Lambert’ s Law

e Specifically: the radiant energy from any small
surface area dA in any direction 0O relative to
the surface normal is proportional to cos 0

KyI; cosb

N Kqlj(N - L)
A L = K4, max(0, N - L)

Laig

dL = dA cos 6

<

Ambient Light

* Additional light bounces we’re not counting

* Approximate them as a constant
I, =Amount of extra light coming into this surface
K, = Amount that bounces off of this surface

]amb — Ka,]a

Total extra light bouncing off this surface

Combined Model

Liotal = dampb + laifr
— K,I, + K4I, max(0,N - L)
Adding color:
In = Kurl,r+ Kqrljrmax(0, N - L)
Ie = Kuoluc+ Kaolicmax(0,N - L)
Is = Ku.pl.p+ Kqpl;p max(0, N - L)

For any wavelength A:
Iy = K\l + K max((), N - L)

Shadows

* What if there is an object between the surface
and light?

AW

Ray Traced Shadows

* Jrace a ray

— Start = point on surface

— End = light source

— t=0 at Suface, t=1 at Light

— “Bias” to avoid surface acne Tt
* Test

— Bias £t <1 =shadow

— t < Bias ort > 1 = use this light

Mirror Reflection

The Dark Side of the Trees - Gilles Tran,
Spheres - Martin K. B.

21

Ray Tracing Reflection

* Viewer looking in direction d sees whatever

the viewer “below” the surface sees looking in
direction r

e In the real world

— Energy loss on the bounce

— Loss different for different colors

* New ray } -

— Start on surface, in reflection direction

Calculating Reflection Vector

Angle of of incidence
= angle of reflection

b= —d
Decompose v

7 = (A 0)R

O =0 — (- D)

A

Recompose r

Ray Traced Reflection

* Avoid looping forever
— Stop after n bounces

— Stop when contribution to pixel gets too small

Specular Reflection

* Shiny reflection from rough surface

* Centered around mirror reflection direction
— But more spread more, depending on roughness

e Easiest for individual light sources

Specular vs. Mirror Reflection

H vector

Strongest for normal
that reflects [to ¢

[+ v

[+ 9]

h =

n-h
— One at center of highlight
— Zero at 90°

Control highlight width
(it h)°

U

Combined Specular & Mirror

* Many surfaces have both

Base Surface

Refraction

Refraction No Refraction

Top

Calculating Refraction Vector

* Snell’s Law

A

n

Thy sin 91} — Tt Sin (975 v
* |nterms Of Ht 0. n cos 6, = n(n . v)
t = msinf; — ncos b,
° 7 t Thsin@t
m term)
m = (n(n-0) —v)/siné, ;T%?n@v?]:)
M sSin 975
= (n(n - 0) — 0)sinfy/ sin —ncosf, | Ot
= (A7 - 0) = 0) Ny /1y i

A

—N

Calculating Refraction Vector

* Snell’s Law

N, sin @, = n, sin 6, 0
* Interms of ¢, g
t = msinf, — fcosb,
e nterm)
—n cos b; —msin b, =
:—fz\/l—sin29t bR 0)
= —ffz\/l — sin® 0, n2 /n? —7 cos by
= —fy/1 — (1 — cos?0,)n2/n? 4

= —iy/1— (1= (R~ 0)2)n2/n

Calculating Refraction Vector

* Snell’s Law

A n
N, sin @, = n, sin 6, !
0, | ncosb, =n(n-v
* Interms of ¢, (7 9)
t = msinf, — fcosb,
A N m sin 6
* Interms of nand v) ' i
R o A —msinf, =
t=(nn-0) —0)n,/ny O — n(n - D)
—i/1— (1 = (- 9)2) n2/n}
—n cos 0, 0
t

—n

Alpha Blending

How much makes it through

oL = opacity

— How much of foreground color 0-1
1-o0 = transparency

— How much of background color

Foreground*a + Background*(1-a.)

Refraction and Alpha

e Refraction = what direction

e o =how much
— Often approximate as a constant
— Better: Use Fresnel

1<nvﬁ-f+4%¢y£) 1<nvﬁ-f+
F=_ 4z —
n Ny N+ T —

— Schlick approximation

Fo = (ny —n4)?/(ny +nyg)?
FrFy+(1—-F)(1—-n-9)°

Full Ray-Tracing

* For each pixel
— Compute ray direction
— Find closest surface
— For each light

e Shoot shadow ray
* If not shadowed, add direct illumination

— Shoot ray in reflection direction
— Shoot ray in refraction direction

Motion Blur

* Things move while the shutter is open

Ray Traced Motion Blur

* Include information on object motion

* Spread multiple rays per pixel across time

Depth of Field

Soler et al., Fourier Depth of Field, ACM TOG v28n2, April 2009

Pinhole Lens

Lens Model

Real Lens

, Focal Plane
1

Lens Model

, Focal Plane
1

Ray Traced DOF

* Move image plane out to focal plane

* Jitter start position within lens aperture
— Smaller aperture = closer to pinhole
— Larger aperture = more DOF blur

