
Basic Ray Tracing

CMSC 435/634

Visibility Problem

• Rendering: converting a model to an image

• Visibility: deciding which objects (or parts) will

appear in the image

– Object-order

• OpenGL (later)

– Image-order

• Ray Tracing (now)

Raytracing

• Given

– Scene

– Viewpoint

– Viewplane

• Cast ray from viewpoint

through pixels into

scene

View

Computing Viewing Rays

• Parametric ray

• Camera frame

 : eye point

 : basis vectors

– right, up, backward

• Right hand rule!

• Screen position

Calculating Intersections

• Define ray parametrically:

• If is center of projection and
is center of pixel, then

 : points between those locations

 : points behind viewer

 : points beyond view window

Ray-Sphere Intersection

• Sphere in vector form

• Ray

• Intersection when

Ray-Polygon Intersection

• Given ray and plane containing polygon

• What is ray/plane intersection?

• Is intersection point inside polygon?

Ray-Triangle Intersection

• Intersection of ray with barycentric triangle

– In triangle if α ш Ϭ, ш 0, ш Ϭ
– To aǀoid ĐoŵputiŶg all three, ĐaŶ replaĐe α ш 0 with + ч 1

boolean raytri (ray r, vector p0, p1, p2, interval [t0,t1])

{

compute t

if ((t < t0) or (t > t1))

 return (false)

compute
if ((< 0) or (> 1))

 return (false)

compute
if ((< 0) or (+ > 1))

 return (false)

 return true
}

Point in Polygon?

• Is P in polygon?

• Cast ray from P to

infinity

– 1 crossing = inside

– 0, 2 crossings = outside

Point in Polygon?

• Is P in concave polygon?

• Cast ray from P to

infinity

– Odd crossings = inside

– Even crossings = outside

What Happens?

Raytracing Characteristics

• Good

– Simple to implement

– Minimal memory required

– Easy to extend

• Bad

– Aliasing

– Computationally intensive

• Intersections expensive (75-90% of rendering time)

• Lots of rays

Basic Illumination Concepts

• Terms

– Illumination: calculating light intensity at a point (object
space; equation) based loosely on physical laws

– Shading: algorithm for calculating intensities at pixels
(image space; algorithm)

• Objects

– Light sources: light-emitting

– Other objects: light-reflecting

• Light sources

– Point (special case: at infinity)

– Area

Lambert’s Law

• Intensity of reflected light related to

orientation

Lambert’s Law

• Specifically: the radiant energy from any small

surface area dA in any direction relative to

the surface normal is proportional to cos

Ambient Light

• AdditioŶal light ďouŶĐes ǁe’re Ŷot ĐouŶtiŶg

• Approximate them as a constant

 = Amount of extra light coming into this surface

 = Amount that bounces off of this surface

 Total extra light bouncing off this surface

Combined Model

Adding color:

For any wavelength :

19

Shadows

• What if there is an object between the surface

and light?

Ray Traced Shadows

• Trace a ray

– Start = point on surface

– End = light source

– t=0 at Suface, t=1 at Light

– ͞Bias͟ to aǀoid surface acne

• Test

– Bias ч t ч ϭ = shadoǁ

– t < Bias or t > 1 = use this light

Mirror Reflection

The Dark Side of the Trees - Gilles Tran,
Spheres - Martin K. B.

21

22

Ray Tracing Reflection

• Viewer looking in direction d sees whatever

the ǀieǁer ͞ďeloǁ͟ the surfaĐe sees looking in
direction r

• In the real world

– Energy loss on the bounce

– Loss different for different colors

• New ray

– Start on surface, in reflection direction

Calculating Reflection Vector

• Angle of of incidence

= angle of reflection

• Decompose

• Recompose

Ray Traced Reflection

• Avoid looping forever

– Stop after n bounces

– Stop when contribution to pixel gets too small

Specular Reflection

• Shiny reflection from rough surface

• Centered around mirror reflection direction

– But more spread more, depending on roughness

• Easiest for individual light sources

Specular vs. Mirror Reflection

H vector

• Strongest for normal

that reflects to

•

•

– One at center of highlight

– Zero at 90°

• Control highlight width

Combined Specular & Mirror

• Many surfaces have both

Refraction

Top

Front

Calculating Refraction Vector

• “Ŷell’s Laǁ

• In terms of

• term

Calculating Refraction Vector

• “Ŷell’s Laǁ

• In terms of

• term

Calculating Refraction Vector

• “Ŷell’s Laǁ

• In terms of

• In terms of and

Alpha Blending

• How much makes it through

• a = opacity

– How much of foreground color 0-1

• 1-a = transparency

– How much of background color

• Foreground*a + Background*(1-a)

Refraction and Alpha

• Refraction = what direction

• a = how much

– Often approximate as a constant

– Better: Use Fresnel

– Schlick approximation

Full Ray-Tracing

• For each pixel

– Compute ray direction

– Find closest surface

– For each light

• Shoot shadow ray

• If not shadowed, add direct illumination

– Shoot ray in reflection direction

– Shoot ray in refraction direction

Motion Blur

• Things move while the shutter is open

Ray Traced Motion Blur

• Include information on object motion

• Spread multiple rays per pixel across time

Depth of Field

Soler et al., Fourier Depth of Field, ACM TOG v28n2, April 2009

Pinhole Lens

Lens Model

Real Lens
Focal Plane

Lens Model
Focal Plane

Ray Traced DOF

• Move image plane out to focal plane

• Jitter start position within lens aperture

– Smaller aperture = closer to pinhole

– Larger aperture = more DOF blur

