COMPUTER GRAPHICS COMPUTER GRAPHICS

Lighting and Shading What(xéﬁl;;tr;c;vi)so far
(OpenGL-oriented)

Simple materials Classic reflection behavior

rough specular

Lambertian

Smooth surfaces of pure materials have
ideal specular reflection

Reflectance (fraction of light reflected)
depends on angle)

CMSC 435/634 April 2015 lighting and shading CMSC 435/634 April 2015 lighting and shading

Adding microgeometry OpengGL Implementaiton

* Example:

- Siggraph_course_material
under the resource page or
download the directory on
the main page which
contains selected siggraph
course material; look for the
program called
lightmaterial.c

Flat shading and perception Interpolative shading
* Lateral inhibition: * Enable with
exaggerates perceived - glShadeModel(GL_SMOOTH)
intensity * Calculate color at each vertex
R * Interpolate color in interior
e '"'e"s'”\% « Compute during scan conversion
Actual intensity (rasterization)
— * Much better image, more expensive to
calculate

Figure 6.29 Perceived and actual in-
tensities at an edge.

Figure 6.28 Step chart.

* Mach bands: perceived
“stripes” along edges

CMSC 435/634 April 2015 lighting and shading CMSC 435/634 April 2015 lighting and shading

COMPUTER GRAPHICS

subdivisions

* Each time, multiply
number of faces by 4.

ofe

CMSC 435 /634 April 2015 lighting and shading

Global ambient light
* Set ambient intensity for entire scene
- Glfloat al[]1={0.2,0,2,0.2,0};

glLightModelfv(GL_LIGHT MODEL_AM
BIENT, al);

- Properly light backs of polygons

glLightModeli(GL_LIGHT MODEL_TWO
_SIDED, GL_TRUE);

CMSC 435/634 April 2015 lighting and shading

COMPUTER GRAPHICS

Lighting in OpenGL

* Very similar to color
- But different

* Enable lighting and lights

- Lighting in general must be
enabled
* glEnable(GL_LIGHTING)
- Each individual light must
be enabled
* glEnable(GL_LIGHTO);
- OpenGL supports at least 8
light sources
* Depending on graphics card

CMSC 435 /634 April 2015 lighting and shading

COMPUTER GRAPHICS

Defining a light source

* Use vectors {r, g, b, a} for
light properties
* Beware: light source will

be transformed!
GLfloat light ambient[]={0.2, 0.2, 0.2, 1.0};
GLfloat light_diffuse[]={1.0, 1.0, 1.0, 1.0};
GLfloat light_specular[]={1.0, 1.0, 1.0, 1.0};
GLfloat light_position[]={-1.0, 1.0, -1.0, 0};
glLightfv(GL _LIGHTO, GL_AMBIENT,
light ambient);
glLightfv(GL_LIGHTO, GL_DIFFUSE,
light_diffuse);
glLightfv(GL_LIGHTO, GL_SPECULAR,
light_specular);
glLightfv(GL_LIGHTO, GL_POSITION,
light_position);

CMSC 435/634 April 2015 lighting and shading

Point source vs. directional
source
* Directional light given by
“position” vector

GLfloat light_position[] = {-1.0, 1.0, -1.0, 0.0};

glLightfv(GL_LIGHT0, GL_POSITION, light_pesition);

* Point source given by
“position” point

GLfloat light_position[] = {-1.0, 1.0, -1.0, 1.0};
glLightfv(GL_LIGHTO0, GL_POSITION, light_position);

CMSC 435 /634 April 2015 lighting and shading

COMPUTER GRAPHICS

Defining material properties

* Material properties stay in
effect (like color)

* Set both specular
coefficients and shiness

GLfloat mat_a[] = {0.1, 0.5, 0.8, 1.0};

GLfloat mat_d[] = {0.1, 0.5, 0.8, 1.0};

GLfloat mat_s[] = {1.0, 1.0, 1.0, 1.0};

GLfloat low_sh][] = {5.0};

giMaterialfv(GL_FRONT, GL_AMBIENT, mat_a);
giMaterialfv(GL_FRONT, GL_DIFFUSE, mat_d);
giMaterialfv(GL_FRONT, GL_SPECULAR, mat_s);
giMaterialfv(GL_FRONT, GL_SHININESS, low_sh);

CMSC 435/634 April 2015 lighting and shading

Spotlights

* Create point source as
before

* Specify additional
properties to create
spotlight

GLfloat sd[] = {-1.0, -1.0, 0.0};
glLightfv(GL_LIGHTO0, GL_SPOT_DIRECTION, sd);

glLightf (GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);
glLightf (GL_LIGHT0, GL_SPOT_EXPONENT, 2.0);

CMSC 435 /634 April 2015 lighting and shading

COMPUTER GRAPHICS

Defining and maintaining
normals

* Define unit normal before
each vertex
- gINormal3f(nx, ny, nz);
- glVertex3f(x, y, 2);

* Length changes under
some transforms;

* Ask OpenGL to
re-normalize
- glEnable(GL_NORMALIZE);

- glEnable(GL_RESCALE_NOR
MAL)

CMSC 435/634 April 2015 lighting and shading

COMPUTER GRAPHICS

There are more in graphics...
(chapters 13, 20, 24, 25)

CMSC 435 /634 April 2015 lighting and shading

Lighting and Shading

* Phong illumination model (last lecture)

- Approximate only interaction light, surface,
viewer

- Relatively fast (online), supported in
OpenGL
* Ray tracing
- Follow light rays through a scene
- Accurate, but expensive (off-line)
* Radiosity (advance CG)

- Calculate surface inter-reflection
approximately

- Accurate, especially interiors, but expensive
(off-line)

CMSC 435/634 April 2015 lighting and shading

COMPUTER GRAPHICS

Motivations

Approximate physical reality

Radiosity: Restaurant interior: Guillermo Leal, Evolul

CMSC 435 /634 April 2015 lighting and shading

Raytracing example

_—

Martin Mdeck, Siemens Lighting

CMSC 435/634 April 2015 lighting and shading

COMPUTER GRAPHICS COMPUTER GRAPHICS

Shading Shading for Computer
* Variation in observed color across an Graphics
object .
- Strong affected by lighting * Need to CompUte Shadmg
- Present even for homogeneous - Of particular geometry
material - Under particular illumination
* Caused by how a material reflects P _ _ _
lights - From a particular viewpoint
- Geometry _ * Basic question: how much
- Light source, locations, and .
properties light reflects from an
~ - Material properties v object toward the viewer?

CMSC 435 /634 April 2015 lighting and shading CMSC 435 /634 April 2015 lighting and shading

COMPUTER GRAPHICS

Inspirations...
* Cornell box images:

- http://graphics.ucsd.edu/~h
enrik/images/cbox.html

* Ray-tracing competition
- http://www.irtc.org/stills/

CMSC 435/634 April 2015 lighting and shading

