COMPUTER GRAPHICS

Basic Ray Tracing

Readings: Chapter 4

Some slides courtesy of Steven Marschner

CMSC 435/634 April 2015 Raytracing

COMPUTER GRAPHICS

What is ray tracing?

http://www.ics.uci.edu/~gopi/CS211B/Ray
Tracing%?20tutorial.pdf

Render images with computers.
Physically correct images are composed by light and
that light will usually come from a light source and
bounce around as light rays in a scene before hitting
our eyes or a camera. By being able to reproduce in
computer simulation the path followed from a light
source to our eye, we should be able to determine
what our eyes see.

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Announcements

* HW3 due on the 8th (this
Wed.)

* Will have a ray-tracer
exercise next class.
Please check it out by
tomorrow morning.

* Lecture by Yuval Boger
(CEO), Sensics on 4/27
(Optional)

CMSC 435 /634 April 2015 Raytracing

Objectives
* Learn the basic ray tracer
- When to use it
- How to do it in OpenGL
- What are these techniques

* Resources:

- https://www.siggraph.org/education
[/materials/HyperGraph/raytrace/rtr
ace0.
ntm

- (better in my opinion) http
://www.ics.uci.edu/~gopi/CS211B/R

ayTracing
%?20tutorial.pdf

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

High-level idea

* Find the color of each pixel on
the view window.

* Tracing rays from the light source to
the eye. Lots of rays are wasted

. _ _ _ because they never reach the eye.

* E.g., if our image resolution is
640x480, we’'d break up the

view window into a grid of 640
squares across and 400
square down. Ray tracer is to
assign colors to these points.

* We trace a new ray from each

ray-object intersection directly towards
the light source.

<t

eye

gt

view window

world

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html#glas90
CMSC 435/634 April 2015 Raytracing

CMSC 435 /634 April 2015 Raytracing

COMPUTER

GRAPHICS

Ray tracing idea

Ray tracing algorithm

light source
viewer (eye)

light source
viewer (eye)

v

objects for each pixel { visible point =~ /
R e compute viewing ray
intersect ray with scene

objects
compute llumination at visible point in scene
J put result into image
)

CMSC 435 /634 April 2015 Raytracing

CMSC 435/634 April 2015

Raytracing

Generate eye rays

* Use window analogy
directly

viewpoint - view plane

\ /— pixel

position
_ viewing ray

view rect
i
.S

pixel =
position :

-~ viewing ray

CMSC 435/634 April 2015 Raytracing

COMPUTER GRAPHICS

Generating eye rays -
perspective
* Compute s in the same way; just

substract dw
- Coordinates of s are (u, v, -d)

s=e+uu—+vv—dw
p=e d=s—e
r(t)=p+td

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Generate eye rays -
orthographic

* Positioning the view rectangle

- Establish three vectors to be camera basis: u, v, w
- View rectangle is in u-v plane, specified by I, r, t, b

— now ray generation
is easy:
s=e+uu—+vv
p=s;d=-w
r(t)=p+td

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Pixel-to-image mapping

* One last detail: (u, v) coords of a pixel

v=t
45
7 j=25
o, o o
o, .2)
[o o o :
0.9)
i
- v=>b
QUKH c’y!(h 01.'(7/ 3.0) - =
il I Il

. u=1l+(r—10)(i+0.5)/n;
v=">b+ (t—b)(j +0.5)/n,

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS COMPUTER GRAPHICS

Ray intersection Ray: a half line
* Standard representation: point p and
direction d
r(t) =p+id

— this is a parametric equation for the line

lets us directly generate the points on the line

— if we restrict to t > 0 then we have a ray

note replacing d with ad doesn’t change ray (a > 0)

/ \B/"/?:] "~

CMSC 435/634 April 2015 Raytracing CMSC 435 /634 April 2015 Raytracing

Ray-sphere intersection: Ray-sphere intersection:
algebraic algebraic
- Condition I: point is on ray * Solution for t by quadratic formula:

- Simpler from holds when d is a unit vector
r(t) =p+td - But we won’t assume this in practice

- | will use the unit-vector form to make the

* Condition 2: point is on sphere geometric interpolation

- Assume unit sphere:

Il =1« [Ix]|* =1
Fix]j=xsx~=]1=0D

_—d-p+./(d-p)?-(d-d)(p-p—1)
N d-d
t=—-d-pt/(d-pP—p-p+]

t

+td)-(p+td)—1=0
. substi. Pt P Fid)

- This is a quadratic equation in t

CMSC 435 /634 April 2015 Raytracing CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS COMPUTER GRAPHICS

Ray-sphere intersection: Ray-box intersection
geometric

* Could intersect with 6 faces
individually

\ * Better way: box is the intersection of 3
’l) slabs
P

lm = —p‘d

2,=p-p—(p-d)?
At=+/1-12
=y(p-d?-p-p+1
P
tog =tm+At=—-p-d+/(p-d)2-p-p+1

CMSC 435/634 April 2015 Raytracing CMSC 435 /634 April 2015 Raytracing

Ray-slab intersection Intersection intersection
* 2D example * Each intersection is an interval

* 3D is the same! * Want last entry point and first exist

point

(dv.dy)
Pz + tzmin (1.:’ = Tmin ’

r)(H\(l)(

Ymin

e
{ lxmax ’
| tyin

tmiu = lll'cl-.‘;(t;,;mi“. tyluiu)

[umx = nli“(’.rllmxv I”U!Ilrlx)

temin = (Tmin —]):')//({.1'

Py + [!/1nin (ly = Ymin
— /
(ymin == (Umin - 1)3/)/ (13/

vd

(px. py)

Xmin Xmax

te [banin: bimax] —$——a———"—
te [fmin Gmax] —— e

te [tumine bmax] O [fmine Gymax] ———————

Shirley fig. 10.16

CMSC 435 /634 April 2015 Raytracing CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS COMPUTER GRAPHICS

Ray-triangle intersection Ray-triangle intersection
* Condition I: point is on ray * In plane, triangle is the intersection of
- Rit)y=p+td 3 half spaces

* Condition 2: point is on plane

- (x-a).n=0
* Condition 3: point is on the inside of all
three edges
* First solve 1 & 2 (ray-plane
intersection)
- Substitute and solve for t:
(p+td—a) - n=0
,_(a-pn
d-n

CMSC 435/634 April 2015 Raytracing CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS COMPUTER GRAPHICS

Inside-edge test Ray-triangle intersection

* Need outside vs. inside

* Reduce to clockwise vs.
counterclockwise
- Vector of edge to vector to x

* User cross product to decide (b—a)x(x—a)-n>0
(c=b)x(x—b)-n>0

(a—c)x(x—c)-n>0

\‘1 -
% !
// /7
17 A
/53
& ’J?‘\\\ﬁg
P
)
s 0

CMSC 435 /634 April 2015 Raytracing CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Image so far

* With eye ray generation and sphere
intersection

Surface 8 = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= {y <ny
for 0 <=ix<nx {
ray = camera.getRay(ix, iy);
hitSurface, t = s.intersect(ray, 0, +inf)
if hitSurface is not null
image.set(ix, iy, white);

CMSC 435/634 April 2015 Raytracing

COMPUTER GRAPHICS

Image so far

* With eye ray generation and scene
intersection

for0<=iy<ny
for 0 <= ix < nx {
ray = camera.getRay(ix, iy);
¢ = scene.trace(ray, 0, +inf);
image.set(ix, 1y, c);
}

Scene.trace(ray, tMin, tMax) {
surface, t = surfs.intersect(ray, tMin, tMax);
if (surface != null) return surface.colorQ);
else return black;

}

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Intersection against many
shapes
* The basic idea is

Group.intersect (ray, tMin, tMax) {
tBest = +inf; firstSurface = null;
for surface in surfaceList {
hitSurface, t = surface.intersect(ray, tMin, tBest);
if hitSurface is not null {
tBest = t;
firstSurface = hitSurface;
)
}
return hitSurface, tBest;

}

— this is linear in the number of shapes
but there are sublinear methods (acceleration structures)

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Shading

* 2D example
* 3D is the same!

(dwdy)

Pz + tzmin (1.:’ = Tmin

rmmx

. /
{zmin = (J‘min -])l')/([.l' i

Py + [!/min (]y = Ymin Ymax
[yluin = (Ymin — I)y’//‘[_l/

vd

(px. py)

Xmin Xmax

CMSC 435 /634 April 2015 Raytracing

Shading

* Compute light reflected toward camera

* Inputs:
- Eye direction
- Light direction (for each of many lights)
- Surface normal
- Surface parameters (color, shininess,...)

N\
4'\T~

CMSC 435/634 April 2015 Raytracing

COMPUTER GRAPHICS

Lambertian shading

* Shading independent of view direction

illumination
N\ from source
R
i 7 l
\ Py
/
NLogm s Lg = kqImax(0,n-1)
0 Y I
diffuse
coefficient
diffusely
reflected
light

* Produce matte appearance

ceee

[Foley etal]

kg —

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Diffuse reflection

* Light is scattered uniformly in all
directions

- The surface color is the same for all viewing directions

* Lambert’s cosine law

[

Top face of cube Top face of In general, light per unit
receives a certain 60° rotated cube area is proportional to
amount of light intercepts half the light cos0=Il+n

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Diffuse shading

* Image so far

Scene.trace(Ray ray, tMin, tMax) {
surface, t = hit(ray, tMin, tMax),
if surface is not null {
point = ray.evaluate(t);
normal = surface.getNormal(point);
return surface.shade(ray, point,
normal, light);

else return backgroundColor;

}

Surface.shade(ray, point, normal, light) {
v = —normalize(ray.direction);
1= normalize(light.pos — point);

// compute shading

}
CMSC 435 /634 April 2015 Raytracing

Shadows

* Surface is only illuminated if nothing
blocks its view of the light

* With ray tracing it is easy to check
- Justintersect a ray with the scene

* Image so far

Surface.shade(ray, point, normal, light) {
shadRay = (point, light.pos - point);
if (shadRay not blocked) {
v = -normalize(ray.direction);
1= normalize(light.pos - point);
// compute shading
}
return black;
1

CMSC 435/634 April 2015 Raytracing

Shadow rounding errors

* Solution shadow rays start a tiny
distance from the surface

* Do this by moving the start point, or
by limiting the t range

e

CMSC 435 /634 April 2015 Raytracing

Shadow rounding errors

* Don’t fall victim to one of the classic
blunders

25

* What is going on?
- Hint: at what t does the shadow ray
intersect the surface you’re shading

CMSC 435 /634 April 2015 Raytracing

Multiple lights

* Important to fill in black shadows
* Just loop over lights add contributions

Ambient shading
- Black shadows are not really right
- One solution: dim light at camera
- Alternative: add a constant “ambient”
color to the shading...

* Image so far

shade(ray, point, normal, lights) {
result = ambient;
for light in lights {
if (shadow ray not blocked) {
result += shading contribution;
}
}
return result;
}

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Specular shading (Blinn-Phong)

* Intensity depends on view direction
- Bright near mirror configuration

o
//'\7‘
\\\

N

CMSC 435/634 April 2015 Raytracing

COMPUTER GRAPHICS

Phong model - plots

* Increasing n narrows the lobe

cos a cos? a cos® a cos® a

1 1 1 1
(\ o\ ok OL
0 90° 0 90° 0 90° 0 90

Fig. 16.9 Different values of cos” a used in the Phong illumination model

[Foley etal.]

* Specular shading

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Diffuse reflection

* Close to mirror .. half vector near

normal
- Measure “near” by dot product of unit
vectors
iy h = bisector(v,1)
)
v+l
v +1]

Ls = ks I max(0, cos a)?
= ks Imax(0,n - h)P

specularly
reflected
light
specular
coefficient

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Diffuse + Phong shading

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Ambient shading

* Shading that does not depend on
anything

- Add constant color to account for disregarded
illumination and fill in black shadows

ambient
coefficient

reflected
ambient
light

CMSC 435/634 April 2015 Raytracing

COMPUTER GRAPHICS

Mirror reflection

* Consider perfectly shiny surface
- There is not a highlight
- Instead there’s a reflection of other objects

* Can render this using recursive ray
tracing
- To find out mirror reflection color, ask what
color is seen from surface point in
reflection direction
Already computing reflection direction for Phong...

- “Glazed” material has mirror reflection and
diffuse

- L=La+Ld+ Lm

- Where Lm is evaluated by tracing a new
ray

CMSC 435 /634 April 2015 Raytracing

Putting it together

* Usually include ambient, diffuse,
Phong in one model

L:La +Ld+Ls
=ky Iy + kg Imax(0,n - 1) + k, I max(0,n - h)?

* The final result is the sum over many
lights

N
L=Lo+) [(La)s + (Ls)i]
=1
N
L=kyI,+ Y [kal;max(0,n L)+ k, I; max(0,n - h;)?]

i=1

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Mirror reflection
* Intensity depends on view direction

- Reflects incident light from mirror direction

.l

r ! & r=v+2((n-v)n—v)
=2n-v)n—-v

(glazed material on floor)

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Ray tracer architecture 101

* You want a class called ray

Point and direction; evaluate (t)
Possible: tMin, tMax

* Some things can be intersected with
rays

Individual surfaces

Groups of surfaces (acceleration goes
here)

The whole scene
Make these all subclasses of surface

Limit the range of valid t values (e.qg.,
shadow rays)

* Once you have the visible intersection,
compute the color

may want to separate shading code from
geometry

Separate class: material (each surface
holds a reference to one)

Its job is to compute the color

CMSC 435/634 April 2015 Raytracing

COMPUTER GRAPHICS

Architectural practicalities

* Return values

Surface intersection tends to want to
return multiple values
T, surface, normal vector; maybe surface point

Typical solution: an intersection record
A class with fields for all these things

Keep track of the intersection record for the
closest intersection

Be careful of accidental aliasing

* Efficiency

What objects are created for every ray? Try
to find a place for them where you can
reuse them.

Shadow rays can be cheaper (any
intersection will do, do not need closest)

But, “first get it right, then make it fast”

CMSC 435 /634 April 2015 Raytracing

