COMPUTER GRAPHICS

Basic Ray Tracing

Readings: Chapter 4

Some slides courtesy of Steven Marschner
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What is ray tracing?

http://www.ics.uci.edu/~gopi/CS211B/Ray
Tracing%?20tutorial.pdf

Render images with computers.
Physically correct images are composed by light and
that light will usually come from a light source and
bounce around as light rays in a scene before hitting
our eyes or a camera. By being able to reproduce in
computer simulation the path followed from a light
source to our eye, we should be able to determine
what our eyes see.
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Announcements

* HW3 due on the 8th (this
Wed.)

* Will have a ray-tracer
exercise next class.
Please check it out by
tomorrow morning.

* Lecture by Yuval Boger
(CEO), Sensics on 4/27
(Optional)
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Objectives
* Learn the basic ray tracer
- When to use it
- How to do it in OpenGL
- What are these techniques

* Resources:

- https://www.siggraph.org/education
[/materials/HyperGraph/raytrace/rtr
ace0.
ntm

- (better in my opinion) http
://www.ics.uci.edu/~gopi/CS211B/R

ayTracing
%?20tutorial.pdf
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High-level idea

* Find the color of each pixel on
the view window.

* Tracing rays from the light source to
the eye. Lots of rays are wasted

. _ _ _ because they never reach the eye.

* E.g., if our image resolution is
640x480, we’'d break up the

view window into a grid of 640
squares across and 400
square down. Ray tracer is to
assign colors to these points.

* We trace a new ray from each

ray-object intersection directly towards
the light source.

<t

eye

gt

view window

world

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html#glas90
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Ray tracing idea

Ray tracing algorithm

light source
viewer (eye)

light source
viewer (eye)

v

objects for each pixel { visible point =~ /
R e compute viewing ray
intersect ray with scene

objects
compute llumination at visible point in scene
J put result into image
)
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Generate eye rays

* Use window analogy
directly

viewpoint - view plane

\ /— pixel

position
_ viewing ray

view rect
i
.S

pixel =
position :

-~ viewing ray
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Generating eye rays -
perspective
* Compute s in the same way; just

substract dw
- Coordinates of s are (u, v, -d)

s=e+uu—+vv—dw
p=e d=s—e
r(t)=p+td
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Generate eye rays -
orthographic

* Positioning the view rectangle

- Establish three vectors to be camera basis: u, v, w
- View rectangle is in u-v plane, specified by I, r, t, b

— now ray generation
is easy:
s=e+uu—+vv
p=s;d=-w
r(t)=p+td
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Pixel-to-image mapping

* One last detail: (u, v) coords of a pixel

v=t
45
7 j=25
o, o o
o, .2)
[ o o o :
0.9)
i
- v=>b
QUKH c’y!(h 01.'(7/ 3.0) - =
il I Il

. u=1l+(r—10)(i+0.5)/n;
v=">b+ (t—b)(j +0.5)/n,
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Ray intersection Ray: a half line
* Standard representation: point p and
direction d
r(t) =p+id

— this is a parametric equation for the line

lets us directly generate the points on the line

— if we restrict to t > 0 then we have a ray

note replacing d with ad doesn’t change ray (a > 0)

/ \B/"/?:] "~
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Ray-sphere intersection: Ray-sphere intersection:
algebraic algebraic
- Condition I: point is on ray * Solution for t by quadratic formula:

- Simpler from holds when d is a unit vector
r(t) =p+td - But we won’t assume this in practice

- | will use the unit-vector form to make the

* Condition 2: point is on sphere geometric interpolation

- Assume unit sphere:

Il =1« [Ix]|* =1
Fix]j=xsx~=]1=0D

_—d-p+./(d-p)?-(d-d)(p-p—1)
N d-d
t=—-d-pt/(d-pP—p-p+]

t

+td)-(p+td)—1=0
. substi. Pt P Fid)

- This is a quadratic equation in t
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Ray-sphere intersection: Ray-box intersection
geometric

* Could intersect with 6 faces
individually

\ * Better way: box is the intersection of 3
’l) slabs
P

lm = —p‘d

2,=p-p—(p-d)?
At=+/1-12
=y(p-d?-p-p+1
P
tog =tm+At=—-p-d+/(p-d)2-p-p+1
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Ray-slab intersection Intersection intersection
* 2D example * Each intersection is an interval

* 3D is the same! * Want last entry point and first exist

point

(dv.dy)
Pz + tzmin (1.:’ = Tmin ’

r)(H\(l)(

Ymin

e
{ lxmax ’
| tyin

tmiu = lll'cl-.‘;(t;,;mi“. tyluiu)

[umx = nli“(’.rllmxv I”U!Ilrlx)

temin = (Tmin — ]):')//({.1'

Py + [!/1nin (ly = Ymin
— /
(ymin == (Umin - 1)3/)/ (13/

vd

(px. py)

Xmin Xmax

te [ banin: bimax] —$——a———"—
te [ fmin Gmax] —— e

te [ tumine bmax] O [ fmine Gymax] ———————

Shirley fig. 10.16
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Ray-triangle intersection Ray-triangle intersection
* Condition I: point is on ray * In plane, triangle is the intersection of
- Rit)y=p+td 3 half spaces

* Condition 2: point is on plane

- (x-a).n=0
* Condition 3: point is on the inside of all
three edges
* First solve 1 & 2 (ray-plane
intersection)
- Substitute and solve for t:
(p+td—a) - n=0
,_(a-pn
d-n
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Inside-edge test Ray-triangle intersection

* Need outside vs. inside

* Reduce to clockwise vs.
counterclockwise
- Vector of edge to vector to x

* User cross product to decide (b—a)x(x—a)-n>0
(c=b)x(x—b)-n>0

(a—c)x(x—c)-n>0

\‘1 -
% !
// /7
17 A
/53
& ’J?‘\\\ﬁg
P
)
s 0
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Image so far

* With eye ray generation and sphere
intersection

Surface 8 = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= {y <ny
for 0 <=ix<nx {
ray = camera.getRay(ix, iy);
hitSurface, t = s.intersect(ray, 0, +inf)
if hitSurface is not null
image.set(ix, iy, white);
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Image so far

* With eye ray generation and scene
intersection

for0<=iy<ny
for 0 <= ix < nx {
ray = camera.getRay(ix, iy);
¢ = scene.trace(ray, 0, +inf);
image.set(ix, 1y, c);
}

Scene.trace(ray, tMin, tMax) {
surface, t = surfs.intersect(ray, tMin, tMax);
if (surface != null) return surface.colorQ);
else return black;

}
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Intersection against many
shapes
* The basic idea is

Group.intersect (ray, tMin, tMax) {
tBest = +inf; firstSurface = null;
for surface in surfaceList {
hitSurface, t = surface.intersect(ray, tMin, tBest);
if hitSurface is not null {
tBest = t;
firstSurface = hitSurface;
)
}
return hitSurface, tBest;

}

— this is linear in the number of shapes
but there are sublinear methods (acceleration structures)
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Shading

* 2D example
* 3D is the same!

(dwdy)

Pz + tzmin (1.:’ = Tmin

rmmx

. /
{zmin = (J‘min - ])l')/([.l' i

Py + [!/min (]y = Ymin Ymax
[yluin = (Ymin — I)y’//‘[_l/

vd

(px. py)

Xmin Xmax
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Shading

* Compute light reflected toward camera

* Inputs:
- Eye direction
- Light direction (for each of many lights)
- Surface normal
- Surface parameters (color, shininess,...)

N\
4'\T~
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Lambertian shading

* Shading independent of view direction

illumination
N\ from source
R
i 7 l
\ Py
/
NLogm s Lg = kqImax(0,n-1)
0 Y I
diffuse
coefficient
diffusely
reflected
light

* Produce matte appearance

ceee

[Foley etal]

kg —

CMSC 435 /634 April 2015 Raytracing

COMPUTER GRAPHICS

Diffuse reflection

* Light is scattered uniformly in all
directions

- The surface color is the same for all viewing directions

* Lambert’s cosine law

[

Top face of cube Top face of In general, light per unit
receives a certain 60° rotated cube area is proportional to
amount of light intercepts half the light cos0=Il+n
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Diffuse shading

* Image so far

Scene.trace(Ray ray, tMin, tMax) {
surface, t = hit(ray, tMin, tMax),
if surface is not null {
point = ray.evaluate(t);
normal = surface.getNormal(point);
return surface.shade(ray, point,
normal, light);

else return backgroundColor;

}

Surface.shade(ray, point, normal, light) {
v = —normalize(ray.direction);
1= normalize(light.pos — point);

// compute shading

}
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Shadows

* Surface is only illuminated if nothing
blocks its view of the light

* With ray tracing it is easy to check
- Justintersect a ray with the scene

* Image so far

Surface.shade(ray, point, normal, light) {
shadRay = (point, light.pos - point);
if (shadRay not blocked) {
v = -normalize(ray.direction);
1= normalize(light.pos - point);
// compute shading
}
return black;
1
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Shadow rounding errors

* Solution shadow rays start a tiny
distance from the surface

* Do this by moving the start point, or
by limiting the t range

e
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Shadow rounding errors

* Don’t fall victim to one of the classic
blunders

25

* What is going on?
- Hint: at what t does the shadow ray
intersect the surface you’re shading
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Multiple lights

* Important to fill in black shadows
* Just loop over lights add contributions

Ambient shading
- Black shadows are not really right
- One solution: dim light at camera
- Alternative: add a constant “ambient”
color to the shading...

* Image so far

shade(ray, point, normal, lights) {
result = ambient;
for light in lights {
if (shadow ray not blocked) {
result += shading contribution;
}
}
return result;
}
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Specular shading (Blinn-Phong)

* Intensity depends on view direction
- Bright near mirror configuration

o
//'\7‘
\\\

N
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Phong model - plots

* Increasing n narrows the lobe

cos a cos? a cos® a cos® a

1 1 1 1
(\ o\ ok OL
0 90° 0 90° 0 90° 0 90

Fig. 16.9 Different values of cos” a used in the Phong illumination model

[Foley etal.]

* Specular shading
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Diffuse reflection

* Close to mirror .. half vector near

normal
- Measure “near” by dot product of unit
vectors
iy h = bisector(v,1)
)
v+l
v +1]

Ls = ks I max(0, cos a)?
= ks Imax(0,n - h)P

specularly
reflected
light
specular
coefficient
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Diffuse + Phong shading
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Ambient shading

* Shading that does not depend on
anything

- Add constant color to account for disregarded
illumination and fill in black shadows

ambient
coefficient

reflected
ambient
light
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Mirror reflection

* Consider perfectly shiny surface
- There is not a highlight
- Instead there’s a reflection of other objects

* Can render this using recursive ray
tracing
- To find out mirror reflection color, ask what
color is seen from surface point in
reflection direction
Already computing reflection direction for Phong...

- “Glazed” material has mirror reflection and
diffuse

- L=La+Ld+ Lm

- Where Lm is evaluated by tracing a new
ray
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Putting it together

* Usually include ambient, diffuse,
Phong in one model

L:La +Ld+Ls
=ky Iy + kg Imax(0,n - 1) + k, I max(0,n - h)?

* The final result is the sum over many
lights

N
L=Lo+ ) [(La)s + (Ls)i]
=1
N
L=kyI,+ Y [kal;max(0,n L)+ k, I; max(0,n - h;)?]

i=1
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Mirror reflection
* Intensity depends on view direction

- Reflects incident light from mirror direction

.l

r ! & r=v+2((n-v)n—v)
=2n-v)n—-v

(glazed material on floor)
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Ray tracer architecture 101

* You want a class called ray

Point and direction; evaluate (t)
Possible: tMin, tMax

* Some things can be intersected with
rays

Individual surfaces

Groups of surfaces (acceleration goes
here)

The whole scene
Make these all subclasses of surface

Limit the range of valid t values (e.qg.,
shadow rays)

* Once you have the visible intersection,
compute the color

may want to separate shading code from
geometry

Separate class: material (each surface
holds a reference to one)

Its job is to compute the color
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Architectural practicalities

* Return values

Surface intersection tends to want to
return multiple values
T, surface, normal vector; maybe surface point

Typical solution: an intersection record
A class with fields for all these things

Keep track of the intersection record for the
closest intersection

Be careful of accidental aliasing

* Efficiency

What objects are created for every ray? Try
to find a place for them where you can
reuse them.

Shadow rays can be cheaper (any
intersection will do, do not need closest)

But, “first get it right, then make it fast”
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