Keyframe Animation

* From hand drawn animation
— Lead animator draws poses at key

Animation frames
—Inbetweener draws frames between
keys
 Computer animation
— Can have separate keys for different

attributes
—Interpolate between values at key
frames
How to Interpolate Spline
* Linear interpolation * Set of polynomials
—Value V, at time T,, V, at time T, Pty =at’ +bt>+ct+d
— Fraction of the way from T, to T, * 1 constraint per coefficient
t=(T-"1To)/(T1 —Tp) — Positions p(t) =at> +bt> +ct+d
— Lerp/mix equation —Velocities p/(t) =3at’>+2bt+¢

v=(1-tVo+tW — Acceleratiop” () = 6t + 25

Bezier Spline

» All constraints from control points:
p(0) = po; p(1) = ps;
p'(0)=3(p1 —po); P'(1)=3(p3 — pP2)

Bezier Spline

 All constraints from control points:

p(0) = Po; p(1) = ps;
p'(0)=3(p1 —po); p'(1)=3(p3 — p2)
* Resulting equations:
o @0° + 0% +E0+d
s @13 +b12 +¢1+d
3(7i —Po)| | 3@0% + 200+ &
3(p3 — p2) 312 +2b1 + ¢

Bezier Spline

« All constraints from control points:
A(0) = fo; p1) = s
p'(0)=3(p1 —po); p'(1)=3(Ps — p2)

* Resulting equations:

Jo = a@a0® 4+ b02 +30+d
Py = al® +b12 +31+d
3(P1 — po) = 3@0% + 260 + ¢

3(p5 — pa) = 3a1% + 261 + C

Bezier Spline

» All constraints from control points:
A(0) = fo; P(1) = i
p'(0)=3(p1 —po); p'(1)=3(p3 — pa2)

* Resulting equations:

Do B d

P3 | @a+ b +é+d
3(ph — Do) | c
3(p5 — P1) 3G +2b+¢

Bezier Spline

» All constraints from control points:
p(1) = ps;

]Z(O) = Do;
P’(O) = 3(]71 - 270)3

p'(1) = 3(p3 — p2)

* Resulting equations:

3(p1 — Do)
3(ps — p2)

Po
Ps

w o= O
N O = O

—_ == O

O O = =

Bezier Spline

SURSTRRS RS

 All constraints from control points:
p(1) = ps;

17(0) = Po;

P'(0) = 3(p1 — po);
* Resulting equations:

—

Po

—

b1

—

b2

—

p3

p'(1) = 3(p3 — p2)

w o = O

N O = O

_— == O

OO = =

SHESIRS RS

Bezier Spline

« All constraints from control points:
A(0) = fo; P(1) = i
p'(0)=3(p1 —po); p'(1)=3(p3 — pa2)

* Resulting equations:

—

Po

—

p3

—3po0 +3D1

w o = O
N O = O
_ == O
S O = =

—3pa +3p3

Bezier Spline

» All constraints from control points:
A(0) = fo; P(1) = i
p'(0)=3(p1 —po); p'(1)=3(p3 — pa2)

* Resulting equations:

-1

a 00 0 1 1 0 0 0] [p
bl (11 1 1 o 0 0 1| |m;
gl " loo 10 —3 3 0 0} |p
d 3210 0 0 —3 3| |p3

Bezier Spline Bezier Basis Functions

» All constraints from control points: * Computing position
p(0) = po; p(1) = ps; @
P0)=3(F —) 5(1)=3(5 —) =[5 2 ¢ 1|2
* Resulting equations: cci’
C_L) -1 3 -3 1 Do
bl |3 -6 3 0| |;m
cl |-3 3 0 0] |ps
d 1 0 0 0| |ps
Bezier Basis Functions Bezier Basis Functions
* Computing position * Group by t': coefficients
-1 3 =3 1] [po
Lo 3 2 3 -6 3 0| |m -1 3 =3 1] |po
p(t)—[t t 14 1} -3 3 0 0 ﬁ2 ﬁ(t):[tg 2 1} 3 —6 3 0 ﬁ1
1 0 0 0| |ps -3 3 0 0| |ph
1 0 0 0| |ps

Bezier Basis Functions Bezier Basis Functions

Group by p;: Basis Functions . Cubic Bezier basis functions
B3(t) =—-t34+3t2-3t+1 =(1-1)3
-1 3 =31 Po Bj(t) =3t> —6t> + 3t = 3(1 —t)%¢
o | s g2 3 -6 3 0 p1 B3(t) = —3t3 + 3¢ =3(1—t) ¢
p(t) A -3 3 0 0 D2 B3(t) =1t =3
1 0 0 0 D3
N =
Catmull-Rom Spline Catmull-Rom Spline
Constraints * Constraints
P0) =i p1) = p; A(0) = pi; p1) = p
p'(0)= (p2 — po)/2; p'(1)= (p3 —P1)/2 p'(0)= (P2 —po)/2; P'(1)= (p3 —p1)/2
* Resulting equations:
2 00 0 1] [a
— Py 11 1 1] |b
(B> —F0)/2| — [0 0 1 0] |¢
_\‘ (P35 — P1)/2 3 2 1 0] |d

Catmull-Rom Spline

* Constraints
1?(0)2171;

P'(0) = (P2 — Do) /2;
* Resulting equations:
0 1 0o o7 [p
0 0 1 0] |ph
—1/5 0 Y2 0 D2
0 ~Yy 0 Ya| |p3

p(1)
p'(1)

= pP2;

= (p3 —p1)/2
0 0 0 1
1 1 1 1
0O 0 1 O
3 2 1 0

Catmull-Rom Spline

* Constraints

p(0) = p1; p(1)

p'(0)= (p2 —po)/2; p'(1)
* Resulting equations:

a Y2 P2 =Y

bl |1 =By 2

el | =Y 0 Y

d 1 0

Z(p

1/2
_1/2
0
0

—P)/2

—

Pbo
p1
p2
p3

Catmull-Rom Spline

* Constraints

p(0) = pi; p(1) = pa;

p'(0)= (P2 —po)/2; P'(1)= (p3 —p1)/2
* Resulting equations:
d o000 11'fTo 1 0 o0
bl |11 1 1 0 0 1 0
gl o010 Yy 0 Yy 0
d 3210 0 =Yy 0 Yy

Catmull-Rom Basis

Functions
Bo(t) = —t3/24+t* —t/2
Bi(t) =3t°/2 — 5% /2 + 1
Bo(t) = —3t3/2 + 2% + t/2
Bi(t) =t3/2 —t2/2

sl =l =l Bl

P1
D2
P3

What to Interpolate Position and Orientation

* What controls to artists need? * Objects can move!

« How to convert those into " Keys: ” o
transformations? — Separate control of position and orientation

— Never interpolate matrices!
* They won’t do what you want.
— Quaternions interpolate better than Euler
anglem(9/2), a,sin(0/2), a.sin(6/2), cos(6/2)]

* But angles make a better animation interface
» Can still convert to quaternion for interpolation
* Possible to use directly for rotation, or convert to

matrix
Squash and Stretch
* Defining the rigidity and mass of an object
by distorting its shape during an action
* Examples:
— Ball flattening during bounce O
— Facial animation - cheeks squash during smile

) S

gﬁf Co6000°

Squash and Stretch

* Keys
— Volume constant
— Different materials respond differently
— Need not deform
— Use stretching to eliminate strobing from fast
action
* Method

— Can use scale to conserve volume (up in one
dimension down in others)

Slow In and Out

* The spacing of the in between
frames to achieve subtlety of timing
and movement

* Example:

— Moving from place to place: start and
end slow

Slow In and Out

EXTREME * Keys

—Think about continuity of second and
third order motion

* Reparameterize time
thew = 3t2 - 2t3

EXTREME

Arcs Character Animation

* The visual path of action for natural * Control

movement — Hierarchical model
« Examples: — Forward kinematics

—Thrown ball —Inverse kinematics
. Keys — Motion capture

— Arc movements are more natural than * Rendering

lines — Skinning

— Blend Shapes
— Deformation

Forward Kinematics Forward Kinematics

* Given a set of joint angles, where’s e Character is holding something in
the hand? their right hand, want to shift it to
— (or foot or head or ...) the left hand
— End effector — Forward transform up tree

* Just apply nested transforms —Inverse transform back down

« We know how to do that! * Think of matrices as X _from_Y

- X _from_ Y *Y from Z = X from Z
—X_from_Y1 =Y from X

Inverse Kinematics Motion Capture (mocap)
. Fino! gngles to match end effector * Track markers on actor
position * Infer transforms

* Few joints: system of equations
 Many joints: optimization
— Often with constraints
* (wrist doesn’t bend that way)
— And heuristics
* Minimal change

* Load support
* Physical data

* Often significant artistic cleanup

Skinning Blend Shapes

* Don’t like intersecting joints * Sculpted vertex positions in key
* Animate “skeleton” POs€eS
—Just joint transforms, no geometry * Blend positions
 Each vertex in “skin” « Good when skeletons don’t work well
— Linear blend of one or more joint « Most often used for facial animation
transforms

—E.g. a Shoulder + g Arm

Can retarget same animation to
different skins

Deformation Physics-based Animation

* Nonlinear function p’ = f(p) * Generally: simulating the laws of
- Affine transform as a function of physics to predict motion

position « Common applications:

— Bend = RotateX(z), twist = RotateZ(z) — Fluids, gas
* Free form deformation (FFD) — Cloth, hair

— 3D spline: p(s,t,u) — Rigid body motion

— Like object is embedded in jello * Approach: model change as

differential equations

Autonomous Objects/Groups

* Generally: create complex group
behavior by defining relatively simple
individual behavior

« Common applications:

— Flocks, crowds
— Particle systems

« Approach: leverage Al techniques

