COMPUTER GRAPHICS

Announcement (Oct 8)

• Midterm next Wed (3/11). I will post midterm review questions online tonight.

Curves and Surfaces

Readings: Chapter 15

CMSC 435 / 634 August 2013 Curves 1

CMSC 435 / 634 August 2013 Curves 2

COMPUTER GRAPHICS

Motivations

In many applications, we need smooth shapes. So far we can only make things with corners: e.g., lines, squares, triangles Circles and ellipses only get you so far!

CMSC 435 / 634 August 2013 Curves 3

COMPUTER GRAPHICS

Spline curves

Specified by a sequence of control points Shape is guided by control points (aka control polygons)

- interpolating: Passes through points
- approximating: merely guided by points

Matrix form of spline

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

				٢×	×	×	×]	$[\mathbf{p}_0]$
$[t^3$	t^2	t	1]	×	\times	\times	×	\mathbf{p}_1
			тJ	×	×	\times	×	\mathbf{p}_2
				×	×	\times	×	\mathbf{p}_3

 $\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

COMPUTER GRAPHICS

Matrix form of spline

 $\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$

	t	1]	×	×	×	×	\mathbf{p}_0
[<u>43</u> <u>4</u> 2			×	\times	\times	×	\mathbf{p}_1
			×	×	\times	×	\mathbf{p}_2
			L×	×	×	\times	\mathbf{p}_3

 $\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

 $\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$

 $\mathbf{p}(t) = \frac{b_0(t)\mathbf{p}_0}{b_0(t)\mathbf{p}_0} + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

CMSC 435 / 634 August 2013 Curves 6

CMSC 435 / 634 August 2013 Curves 5

COMPUTER GRAPHICS

How splines depend on their controls

- Each coordinate is separate
 - The function x(t) is determined solely by the x coordinates of the control points
 - This means 1D, 2D, 3D, ... curves are all really the same
- Spline curves are linear function of their controls
 - Moving a control point two inches to the right moves x(t) twice as far as moving it by one inch
 - X(t), for fixed t, is a linear combination (weighted sum) of the control points' x coordinates
 - P(t), for fixed t, is a linear combination (weighted sum) of the control points

CMSC 435 / 634 August 2013 Curves 7

COMPUTER GRAPHICS

Example: piece wise linear reconstruction of lines

- (See lecture notes on transforming the canonical form into the polynomial form for lines.)
- Basis function formulation
 - Regroup expression by p rather than t

$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$
$$= (1 - t)\mathbf{p}_0 + t\mathbf{p}_1$$

- Interpretation in matrix viewpoint

$$\mathbf{p}(t) = \left(\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

- Basis function: "function times point"
 - Contribution of each point as t changes or think about it like a reconstruction filter

Example: piece wise linear reconstruction of lines

- Basis function: "function times point"
 - Basis functions: contribution of each point as t changes
 - Can think of them as blending functions glued together
 - This is like a reconstruction filter

Spline Properties

CMSC 435 / 634 August 2013 Curves 9

CMSC 435 / 634 August 2013 Curves 10

COMPUTER GRAPHICS

Continuity

- Smoothness can be described by degree of continuity
 - Zero-order (C0): position matches from both sides: (p3 = q0 for two curves with control points of p0-3 and q0-3)
 - First-order (C1): tangent matches from both sides (p3-p2 = q1-q0)
 - Second-order (C2): curvature matches from both sides

COMPUTER GRAPHICS

Continuity

- **Parametric continuity (C)** of spline is continuity of coordinate functions
- Geometric continuity (G) is continuity of the curve itself
 - Zero order (G0): positions match
 - First order (G1): two tangent vectors to be in opposite directions, but the magnitudes may be different. Or p3-p2 = k(q1-q0)
- Neither form of continuity is guaranteed by the other
 - Can be C1 but not G1 when P(t) comes to a halt (next slide)
 - Can be G1 but not C1 when the tangent vector changes length abruptly.

Affine invariance

- Transforming the control points is the same as transforming the curve
 - True for all commonly used splines
 - Extremely convenient in practice

COMPUTER GRAPHICS

Splines

CMSC 435 / 634 August 2013 Curves 19

 See lecture notes on construction from canonical form to

polynomial form

Hermite to Bezier

- Mixture of points and vectors
- Specify tangents as differences of points

CMSC 435 / 634 August 2013 Curves 21

COMPUTER GRAPHICS

Hermite to Bezier

Bezier curve matrix representation

$\mathbf{p}(t) = \left[t^3\right.$				$\left[-1\right]$	3	-3	1]	$[\mathbf{p}_0]$
$\mathbf{p}(t) = [t^3]$	t^2	t	1]	3	-6	3	0	\mathbf{p}_1
$\mathbf{p}(\iota) = [\iota]$				-3	3	0	0	\mathbf{p}_2
				1	0	0	0	\mathbf{p}_3

CMSC 435 / 634 August 2013 Curves 22

COMPUTER GRAPHICS

Hermite to Bezier

Bezier curve matrix representation

COMPUTER GRAPHICS

Example

• Given four points, construct the Bezier curve

 $\begin{array}{rcl} p_0 &=& (0.9,1) \\ p_1 &=& (0.9,0) \\ p_2 &=& (0,0.5) \\ p_3 &=& (1,0.5) \end{array}$

Chaining spline segments

- Bezier curves are convenient because their controls are all points and they have nice properties
 - And they interpolate every $4^{\mbox{\tiny th}}$ point
- No continuity built in
 - Achieve C1 using colinear control points

CMSC 435 / 634 August 2013 Curves 25

COMPUTER GRAPHICS

Subdivision

• A Bezier spline segment can be split into a two segment curve

CMSC 435 / 634 August 2013 Curves 26

COMPUTER GRAPHICS

Bezier surfaces

• Can be directly derived from the 2D form (equations are in lecture notes)