Why mesh?

Triangle Mesh

Readings: Chapter 12 (12.1)

Numerical simulation of flapping wings Persson, Willis, & Peraire 2011

CMSC 435 / 634 August 2013 Pipeline and rasterization 2

CMSC 435 / 634 August 2013 Pipeline and rasterization 1

COMPUTER GRAPHICS

CMSC 435 / 634 August 2013 Pipeline and rasterization 3

COMPUTER GRAPHICS

Notation

- Nt = # triangles; Nv = # of vertices; Ne = # of edges
- Euler: Nv Ne + Nt = 2 for a simple closed surface

Representations for triangle meshes

COMPUTER GRAPHICS

Objectives

- Compactness
- Efficiency for rendering
- Efficiency of queries
 - All vertices of a triangle
 - All triangles around a vertex
 - Neighboring triangles of a triangle
 - Applications:
 - Finding triangle strips; computing subdivision surfaces; Mesh editing

CMSC 435 / 634 August 2013 Pipeline and rasterization 6

COMPUTER GRAPHICS

Methods

CMSC 435 / 634 August 2013 Pipeline and rasterization 5

- Separate triangles
- Indexed triangle set
 Shared vertices
- Triangle strips and triangle fans
 - Compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - Supports adjacency queries
- Winged-edge data structure

CMSC 435 / 634 August 2013 Pipeline and rasterization 7

 Supports general polygon meshes

COMPUTER GRAPHICS

Separate triangles

- Array of triples of points
 - Float [Nt][3][3]: about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)

Any problems?

COMPUTER GRAPHICS	COMPUTER GRAPHICS
Separate triangles	Indexed triangle set
$(x_{1}, y_{1}, z_{1})^{2}$ $(x_{0}, y_{0}, z_{0}) \xrightarrow{0} 1$ $(x_{0}, y_{0}, z_{0}) \xrightarrow{0} T_{1}$ (x_{3}, y_{3}, z_{3})	 Store each vertex once Each triangle points to its three vertices Triangle { Vertex ver[3]; Vertex { float pos[3]; // or other data }
What is the representation?	Mesh { float verts[nv][3]; int tlnd[nt][3]; }
CMSC 435 / 634 August 2013 Pipeline and rasterization 9	CMSC 435 / 634 August 2013 Pipeline and rasterization 10

Indexed triangle set

What is the representation?

CMSC 435 / 634 August 2013 Pipeline and rasterization 11

COMPUTER GRAPHICS

Triangle strips

- Take advantage of the mesh property
 - Each triangle is usually adjacent to the previous
 - Let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 - Every sequence of three vertices produces a triangle
 - E.g., 0, 1, 2, 3, 4 5, 6, 7, .. Leads to
 - (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7)

Triangle strips

What is the representation? P4, p0 p1

CMSC 435 / 634 August 2013 Pipeline and rasterization 13

COMPUTER GRAPHICS

Triangle fans

- Same idea as triangle strips, but keep oldest rather than newest
 - Every sequence of three vertices produces a triangle
 - E.g., 0, 1, 2, 3, 4, 5, .. Lead to
 - (0 1 2), (0 2 3), (0 3 4), (0 4 5)

CMSC 435 / 634 August 2013 Pipeline and rasterization 14

COMPUTER GRAPHICS

Data structures for mesh connectivity and Triangle neighbor structure

COMPUTER GRAPHICS

Why data structures?

- Given a triangle, what are the three adjacent triangles?
- Given an edge, which two triangles share it?
- Given a vertex, which faces share it?
- Given a vertex, which edges share it?

CMSC 435 / 634 August 2013 Pipeline and rasterization 16

Triangle-neighbor data structure to traverse a mesh

(See lecture notes)