Pipeline, Rasterization, and Antialising

Readings: Chapter 8 (math: section 2.7)

COMPUTER GRAPHICS

Announcements

- Proj 2 due Oct 4th 11 pm
- Midterm: Oct 15
- Adjusted the schedule a little bit to fit our progress

OMPUTER GRAPHIC		COMPUTER GRAPHICS
		Primitives
Pipeline you are here you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels to react the second stream blending, compositing, shading to react the second stream user sees this	 Points Line segments And chains of connected line segments Triangles And that is all! Curves? Approximate them with chains of line segments Polygons? Break them up into triangles Curved regions? Approximate 	
CMSC 435 / 634		them with triangles. • Trend has been toward minimal primitivies - Simple, uniform, repetitive: good for parallelism
	Pipeline and rasterization 5	CMSC 435 / 634 Pipeline and rasterization 6

Rasterization

COMPUTER GRAPHICS

Primitives

- First job: enumerate the pixels covered by a primitive
 - Simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - E.g., colors computed at vertices
 - Normals at vertices
 - Will see applications later on

Rasterizing lines

COMPUTER GRAPHICS

Rasterizing lines

CMSC 435 / 634

COMPUTER GRAPHICS

Pipeline and rasterization 9

COMPUTER GRAPHICS

<section-header>

Line equation: y = b + mx

Simple algorithm: //Evaluate line equation per column: for x=ceil(x0) to floor (x1) y = b + m * x output (x, round(y));

```
CMSC 435 / 634
```


Optimizing line drawing: Bresenham lines result (midpoint algorithm)

COMPUTER GRAPHICS

Midpoint algorithm

- At each pixel the only options are E and NE
- d = m(x+1) + b-y
- d>0.5 decides between E and NE
 - Only need to update d for integer steps in x and y; we can do that with addition

COMPUTER GRAPHICS

Midpoint algorithm

COMPUTER GRAPHICS	COMPUTER GRAPHICS	
Attributes interpolation	Rasterizing triangles	
• Attributes: – Color – Normal vector	 The most common case in most applications Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization Walk from pixel to pixel 	
	over (at least the polygon's area)	
	 Evaluate linear functions as you go 	
	 User those functions to decide which pixels are inside 	
CMSC 435 / 634 Pipeline and rasterization 17	CMSC 435 / 634 Pipeline and rasterization 18	

Rasterizing triangles

- Input:
 - Three 2D points (the triangle coordinates in pixel space)
 - parameter attributes at each vertex
- Output
 - A list of fragments, each with
 - The integer pixel coordinates (x, y)
 - Interpolated parameter values

CMSC 435 / 634

Pipeline and rasterization 19

COMPUTER GRAPHICS

Rasterizing triangles

(See class notes for the drawing algorithm.)

Barycentric coordinates

- A coordinate system that does not use orthogonal basis
 - Algebraic viewpoint: $\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$

 $\alpha + \beta + \gamma = 1$

- Geometric viewpoint (areas)
 - (refer to in-class notes)

COMPUTER GRAPHICS

Barycentric coordinates

- Properties
 - Geometric viewpoint: distances

 Linear viewpoint: basis of edges

$$\alpha = 1 - \beta - \gamma$$

$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$

CMSC 435 / 634

Pipeline and rasterization 22

COMPUTER GRAPHICS

CMSC 435 / 634

Barycentric coordinates

Pipeline and rasterization 21

- Properties
 - Basis for the plane

- Triangle interior test:

$$\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1$$

Pipeline and rasterization 23

COMPUTER GRAPHICS

Barycentric coordinates

- Calculation (derivation in class)
- Example: take a triangle and a point in this triangle and see how we calculate the point barycentric coordinates.

CMSC 435 / 634

Pixel-walk rasterization

CMSC 435 / 634

Pipeline and rasterization 25

COMPUTER GRAPHICS

Compute colors

COMPUTER GRAPHICS

Primitives

- First job: enumerate the pixels covered by a primitive
 - Simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - E.g., colors computed at vertices
 - Normals at vertices
 - Will see applications later on

CMSC	435	/ 634
01150	.55	051

Pipeline and rasterization 26

CMSC 435 / 634

Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - Linear in 2D
 - Use linear interpolation as the vertex calculation

COMPUTER GRAPHICS

Triangle coloring interpolation result

COMPUTER GRAPHICS COMPUTER GRAPHICS Insert normal Insert normal • For example, we could Instead - We could associate **normals** associate the same to every vertex: normal/color to every $T = ((p_1, n_1), (p_2, n_2), (p_3, n_3))$ point on the face of a so that the normal at point q in triangle by computing the triangle is the interpolation of the normals $\mathbf{n} = \frac{(\mathbf{p}_2 - \mathbf{p}_1) \times (\mathbf{p}_3 - \mathbf{p}_1)}{\|(\mathbf{p}_2 - \mathbf{p}_1) \times (\mathbf{p}_3 - \mathbf{p}_1)\|}$ at the vertices $n(q) = \frac{\alpha(q)n_1 + \beta(q)n_2 + \gamma(q)n_3}{\left\|\alpha(q)n_1 + \beta(q)n_2 + \gamma(q)n_3\right\|}$ nz p3 This gives rise to flat shading/ coloring across the faces n(q)**Triangle Normals** CMSC 435 / 634 Pipeline and rasterization 33 CMSC 435 / 634 Pipeline and rasterization 34

COMPUTER GRAPHICS

Insert normals

Two insertion results: which is better?

Triangle Normals

Interpolated Point Normals

More uses: texture mapping

CMSC 435 / 634

Pipeline and rasterization 35

CMSC 435 / 634

COMPUTER GRAPHICS	COMPUTER GRAPHICS
COMPUTER GRAPHICS	 Rasterization tends to assume the triangles are on screen Particularly problematic to
Clipping	 have triangles crossing the plane Z=0 After projection, before perspective divide Clip against the 6 planes
CMSC 435 / 634 Pipeline and rasterization 37	CMSC 435 / 634 Pipeline and rasterization 38
Clipping a triangle against a	COMPUTER GRAPHICS
Clipping a triangle against a plane • 4 cases, based on the sidedness of vertices – All in (keep)	
 All out (discard) One in, two out (one clipped triangle) 	Operations before and after rasterization
 Two in, one out (two clipped triangle) 	
CMSC 435 / 634 Pipeline and rasterization 39	CMSC 435 / 634 Pipeline and rasterization 40

CMSC 435 / 634

Pipeline revisited

Pipeline and rasterization 43

COMPUTER GRAPHICS

Hidden surface removal

- We have discussed how to map primitive to image space
 - Projection and perspective are depth cues
 - Occlusion is another very important cue

CMSC 435 / 634

Pipeline and rasterization 42

Back face culling • For closed shapes you will never see the inside - Therefore only draw surfaces that face the camera - Implemented by checking n.v n

CMSC 435 / 634

The z buffer

- Draw in any order, keep track of closest
 - Allocate extra channel per pixel to keep track of closest depth so far
 - When drawing, compare object's depth to current closest depth and discard if greater

CMSC 435 / 634