COMPUTER GRAPHICS

CMSC 435 / 634

3D Viewing

Readings: Chapters 6 & 7

Viewing 1/9

COMPUTER GRAPHICS

Announcement

- Proj 1 due in one week.
- Proj 2 and hw1 will be out in one week

CMSC 435 / 634

Viewing 2/9

<page-header><page-header><image>

COMPUTER GRAPHICS

Viewing: from 3D to 2D

- So far we have learned how to construct a 3D scene from geometries and their transformations
- Next we will look at how to:
 - Start from a point in 3D
 - Compute its projection into the image on the 2D screen
- Central tool is matrix transformations (more math?! Ugh!
 - \odot
 - Combines seamlessly with coordinate transformations used to position camera and model
 - Ultimate goal: multiply these matrix to map any 3D point to its correct screen location

CMSC 435 / 634

COMPUTER GRAPHICS	COMPUTER GRAPHICS
	Perspective Projection
	 Perspective projection: scale diminishes or increases with the distance to the camera Truncated view volume (view frustum)
Two typical classes of viewing	Projection of up vector Up vector r Position θ_H Height Angle
	Far Distance
CMSC 435 / 634 Viewing 5/9	CMSC 435 / 634 Viewing 6/9

COMPUTER GRAPHICS

Orthographic Parallel Projection

- A simple projection: just toss out the depth
- Orthographic parallel projection has width and height view angles of zero
- The same truncated viewing volume applies as the perspective projection.

CMSC 435 / 634

Viewing 7/9

COMPUTER GRAPHICS

Mathematical representation

CMSC 435 / 634

Viewing 8/9

COMPUTER GRAPHICS

Viewing = Pipeline of transformations

- Standard sequence of transforms
 - Modeling tran:
 - Camera (eye) tran:
 - Projection tran:
 - Viewport or windowing tran:

COMPUTER GRAPHICS

Mathematical representation

- Modeling tran.: Tran. into world coord. Mm
- Camera tran.: Tran. into eye coords.Mcam
- Perspective tran.: perspective matrix P
- Orthographic projection: Morth
- Viewport tran.: Mvp

$\mathbf{p}_s = \mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\mathrm{orth}} \mathbf{P} \mathbf{M}_{\mathrm{cam}} \mathbf{M}_{\mathrm{m}} \mathbf{p}_o$

•This lecture is about constructing these matrices

CMSC 435 / 634

Viewing 10/9

COMPUTER GRAPHICS

CMSC 435 / 634

Mathematical Construction and Implementation of Viewing (see in-class notes)

Viewing 11/9

Viewing 9/9