COMPUTER GRAPHICS	COMPUTER GRAPHICS	
	Announceme	nt
	 Proj 1 posted on 2/2 weeks from today. 	, due two
Geometric Transformations		
Readings: Chapters 5-6		
CMSC 435 / 634 Transformations 1/29	CMSC 435 / 634	Transformations 2/29

_			
СОМ	IPUTER	GRAP	HICS

Exercises

- Translate [1,3] by [7,9]
- Scale [2,3] by 5 in the X direction and 10 in the Y direction
- Rotate [2,2] by 90° (∏/2)

CMSC 435 / 634

 What is the result for each of the following two cases applied to the house in the figure.

Transformations 3/29

Examples		
• Translate [1,3] by [7,9]		
$\begin{bmatrix} 1 & 0 & 7 \\ 0 & 1 & 9 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \\ 1 \end{bmatrix}$		
 Scale [2,3] by 5 in the X direction and 10 in the Y direction 		
$\begin{bmatrix} 5 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 30 \\ 1 \end{bmatrix}$		
• Rotate [2,2] by 90 [°] (TT /2)		
$\begin{bmatrix} \cos(\pi/2) & -\sin(\pi/2) & 0\\ \sin(\pi/2) & \cos(\pi/2) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2\\ 2\\ 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2\\ 2\\ 2\\ 1 \end{bmatrix} = \begin{bmatrix} -2\\ 2\\ 1 \end{bmatrix}$		

COMPUTER GRAPHICS

CMSC 435 / 634

Transformations 4/29

COMPUTER GRAPHICS

Why do we need geometric Transformations (T,R,S) in Graphics?

 Scene graph (DAG) construction from primitives

• Object motion (this lecture)

Camera motion (next lecture on viewing)

CMSC 435 / 634	Transformations 5/29

COMPUTER GRAPHICS

2D Transformations

CMSC 435 / 634

Transformations 6/29

- A rotation by 0 angle, i.e. no rotation at all, gives us the identity matrix
- Preserves lengths in objects, and angles between parts of objects
- Rotation is rigid-body

CMSC 435 / 634

Transformations 9/29

COMPUTER GRAPHICS

2D Rotation and Scale are Relative to Origin

- Suppose object is not centered at origin and we want to scale and rotate it.
- Solution: move to the origin, scale and/or rotate *in its local coordinate system*, then move it back.

 This sequence suggests the need to compose successive transformations...

Transformations 10/29

CMSC 435 / 634

COMPUTER GRAPHICS

Homogenous Coordinates

• Translation, scaling and rotation are expressed as:

translation:v' = v + tscale:v' = Svrotation:v' = Rv

- Composition is difficult to express — translation is not expressed as a matrix
- multiplication Homogeneous coordinates allows expression of all
- Homogeneous coordinates allows expression of all three transformations as 3x3 matrices for easy composition

 $P_{2d}(x,y) \to P_h(wx,wy,w), \quad w \neq 0$ $P(x', y', w) = w \neq 0$

$$P_h(x, y, w), \quad w \neq 0$$
$$P_{2d}(x, y) = P_{2d}\left(\frac{x'}{w}, \frac{y'}{w}\right)$$

- w is 1 for affine transformations in graphics
- Note: p=(x, y) becomes p=(x, y, 1)
 This conversion does not transform p. It is only changing notation to show it can be viewed as a point on w = 1 hyperplane

CMSC 435 / 634

Transformations 11/29

COMPUTER GRAPHICS 2D Homogeneous Coordinate Transformations For points written in homogeneous coordinates, x y 1 translation, scaling and rotation relative to the origin are expressed homogeneously as: $\begin{bmatrix} 1 & 0 & d_x \end{bmatrix}$ $v' = T_{(d_x, d_y)v}$ $T_{(d_x,d_y)} = \begin{vmatrix} 0 & 1 & d_y \end{vmatrix}$ 0 0 1 0 0 Sx $v' = S_{(s_x, s_y)v}$ $0 s_y 0$ $S_{(s_x,s_y)} =$ 0 0 1 $\cos\phi$ $-\sin\phi$ 0 $v' = R_{(\phi)v}$ 0 $R_{(\phi)} =$ $\sin \phi$ $\cos\phi$ 0 0 1 CMSC 435 / 634 Transformations 12/29

COMPUTER GRAPHICS	COMPUTER GRAPHICS
	3D Basic Transformations (1/2)
	(right-handed coordinate system)
	z ×
3D Transformations	• Translation $\begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix}$
	• Scaling $\begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
CMSC 435 / 634 Transformations 15/29	CMSC 435 / 634 Transformations 16/29

COMPUTER GRAPHICS				
3D Basic Transformations (2/2)				
(right-handed coordinate system)				
Rotation about X-axis	Contraction of the Contraction o			
	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$			
	$0 \cos\theta - \sin\theta = 0$			
	$0 \sin\theta \cos\theta 0$			
Rotation about Y-axis	$\begin{bmatrix} \cos\theta & 0 & \sin\theta & 0\\ 0 & 1 & 0 & 0\\ -\sin\theta & 0 & \cos\theta & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$			
Rotation about Z-axis	$\begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0\\ \sin\theta & \cos\theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$			
CMSC 435 / 634	Transformations 17/29			

More transformation matrices

CMSC 435 / 634

Transformations 18/29

COMPUTER GRAPHICS

Scene graph manipulation

Transformations 20/29

COMPUTER GRAPHICS

Transformations in Scene Graphs

- 3D scenes are often stored in a scene graph:
 - Open Scene Graph
 - Sun's Java3D™

CMSC 435 / 634

- X3D [™] (VRML [™] was a precursor to X3D)
- Typical scene graph format:
 - objects (cubes, sphere, cone, polyhedra etc.)
 stored as nodes (default: unit size at origin)
 attributes (color, texture map, etc.) and
 - transformations are also nodes in scene graph (labeled edges on slide 2 are an abstraction)

Transformations 21/29

COMPUTER GRAPHICS

Transformations in Scene Graphs

Closer look at Scenegraph from slide 2 ...

COMPUTER GRAPHICS

Transformations in Scene Graphs (3/3)

- · Transformations affect all child nodes
- Sub-trees can be reused, called group nodes
 - instances of a group can have different transformations applied to them (e.g. group3 is used twice- once under t1 and once under t4)
 - must be defined before use

COMPUTER GRAPHICS

Composing Transformations in a Scene Graph (1/2)

- Transformation nodes contain at least a matrix that handles the transformation;
 - may also contain individual transformation parameters
- To determine final composite transformation matrix (CTM) for object node:
 - compose all parent transformations during prefix graph traversal
 - exact detail of how this is done varies from package to package, so be careful

CMSC 435 / 634

Transformations 24/29

Transformations 26/29

COMPUTER GRAPHICS

E1: Windowing transforms

- Create a transform matrix that takes points in the rectangle $[x_i,\ x_h] \times [y_i,\ y_h]$ to the rectangle $[x_i',\ x_h'],\ [y_i',\ y_h']$ (Shirley Figure 6.18)

COMPUTER GRAPHICS

E2: Transformation between two coordinate systems

 Create a transform matrix that takes a point in the (X,Y) coordinate system to the point in the (U, V) coordinate system; and vice versa (Shirley Figure 6.20)

CMSC 435 / 634

Transformations 28/29

