Raster Images and Displays

INTRODUCTION TO COMPUTER GRAPHICS

Outline

- Overview
- Example Applications

CMSC 435 / 634 Raster Images and Displays 1/22 CMSC 435 / 634 Raster Images and Displays 2/22 INTRODUCTION TO COMPUTER GRAPHICS INTRODUCTION TO COMPUTER GRAPHICS What is an image? An image is For our purposes, an image is: • A 2D distribution of gray levels or intensity, colors, or opacities A function defined on a 2D plane with samples at regular points (almost always a rectilinear grid) To do graphics, we must: Represent images - encode them numerically Display images - realize them as actual ٠ intensity distributions Operating principle: humans are trichromatic Match any color with blend of 3

Raster Images and Displays 3/22

CMSC 435 / 634

Raster Images and Displays 4/22

Represent images

INTRODUCTION TO COMPUTER GRAPHICS

Represent images

Common image types include:

- 1 sample per point (B&W or Grayscale)
- 3 samples per point (Red, Green, Blue)
- 4 samples per point (Red, Green, Blue, and "Alpha", a.k.a. Opacity)
- 5 samples per point (add "Depth")
 3 samples per pixel, *RGB makes good primaries*

CMSC 435 / 634

Raster Images and Displays 5/22

INTRODUCTION TO COMPUTER GRAPHICS

Channels

Each of these planes is a "channel". The red channel of a 3 sample per pixel image is a 1 sample per pixel image, consisting of just the red values from the original image.

INTRODUCTION TO COMPUTER GRAPHICS

The Alpha Channel

Adding opacity information to pixels

- In addition to R, G, B channels of an image, add a fourth channel, called α
- Alpha: [0, 1]

٠

- Useful for blending images
- image with higher alpha value "shows through" more

INTRODUCTION TO COMPUTER GRAPHICS

Representative display technologies

Computer Displays

- Raster CRT display •
- LCD display

Printers

- Laser printer
- ٠ Inkjet printer

Display images

CMSC 435 / 634

Raster Images and Displays 11/22

CMSC 435 / 634

Raster Images and Displays 12/22

Raster display system

- Screen image defined by a 2D array in RAM
- The memory area that maps to the screen is called the *frame buffer*.

- CRT: dot pattern to produce finely interleaved color images
- LCD: interleaved RGB pixels.

But want to display images that do not fit the hardware (e.g., too big?)

CMSC 435 / 634

Raster Images and Displays 13/22

Example Applications

CMSC 435 / 634

Raster Images and Displays 14/22

INTRODUCTION TO COMPUTER GRAPHICS

Examples

Give an idea of what is done with image processing

- Image enhancement
 - scientific filtering
 - forensic science
- Multipart composition
- Computer vision

INTRODUCTION TO COMPUTER GRAPHICS

An Application of the Edge-Detection Filtering Technique

Some filtering techniques are designed to make features in an image more apparent

- Done by using a filter that accentuates changes above certain threshold
- Make specific features of an image stand out
- Can even calculate a new image based on some function that takes an image to another image
- e.g., define an image by the magnitude of change in the original image at each point.
 - Thus, higher-valued pixels in new image are places where original image was changing rapidly

CMSC 435 / 634

Raster Images and Displays 15/22

MRI Image Enhancement

Take slice from MRI scan of canine heart, and find boundaries between types of tissue

- Image with gray levels representing tissue density
- Using filter from previous slide, compute new image. Again, new image brighter where MRI image gray values changing faster
- Different densities of different types of matter will show up with bright boundaries in between.

Original MRI Image of a Dog Heart

Edge Detection Image

CMSC 435 / 634

Raster Images and Displays 17/22

INTRODUCTION TO COMPUTER GRAPHICS

Multipart Composition Image composition is popular in art world, as well as in tabloid news

- Takes parts of several images and creates single image. Hard part is making all images fit together naturally
- Artists can use it to create amazing collages and multi-layered effects
- Tabloid newspaper artists can use it to create "News Photos" of things that never happened

INTRODUCTION TO COMPUTER GRAPHICS

Forensic Science Image Enhancement

Image enhancement has been used by forensic scientists for years to pull information from seemingly hopeless images.

- We have a security camera video of the back of a car that was used in a robbery
- The image is too dark and noisy for the police to pull a license number

Image processing like this in the media a lot in the last few years

- These techniques have been used to find small features in satellite images
- Image processing for forensic science is even spotlighted in popular entertainment, such as the TV show CSI: Crime Scene Investigation

CMSC 435 / 634

Raster Images and Displays 18/22

INTRODUCTION TO COMPUTER GRAPHICS

Multipart Composition

Some famous examples of faked photos include:

Reuters photo of Beirut:

Chinese press photo of Tibet railway (2008)

Raster Images and Displays 19/22

Other things you can do with an image

- Overview
- Example Applications
- Jaggies & Aliasing
- Sampling & Duals
- Convolution
- Filtering
- Scaling
- Reconstruction
- Scaling, continued
- Implementation

CMSC 435 / 634

Raster Images and Displays 21/22