COMPUTER GRAPHICS

Announcement

• Reading: Chapters 1-3

Math Review

CMSC 435 / 634

Math 1/6

CMSC 435 / 634

Math 2/6

COMPUTER GRAPHICS

Overview

- Vector (trigonometry)
 - length
 - addition, subtraction, multiply
 - Normalization
 - Dot product, cross product, angles
- Coordinates
 - Right-handed coordinates
 - Global (world) vs. local (object) coordinates
- Matrix
 - Transpose, inverse
 - Multiply
- Linear interpolation

COMPUTER GRAPHICS

Implicit and Explicit (Parametric) forms

- Line
 - Line equation from two points
 - Line defined by two end points
- Plane
 - A plane orthogonal to n, through a point p;
 - A plane passing three points
- Triangle
 - Order of the three points is important
 - Find the normal direction (for calculating lighting effects)
- Sphere
 - Radius *r* at the center point of *c*.

Math 3/6

Math 4/6

COMPUTER GRAPHICS

Implicit representations

- Equation to tell whether we are on the curve:
 - $\{v \mid f(v)=0\}$
- Example: line (orthogonal to u, distance k from 0)
 - {v | v.u + k = 0 }
- Example: circle (center p, radius r)

-
$$\{v \mid (v-p).(v-p)+r^2 = 0\}$$

COMPUTER GRAPHICS

Explicit representations

- Also called parametric
 - Equation to map domain into plane $\{f(t) \, | \, t \in D\}$
- Example: line (containing p, parallel to u)

 $\{\mathbf{p} + t\mathbf{u} \,|\, t \in \mathbb{R}\}$

• Example: circle (center b, radius r) $\{\mathbf{p} + r[\cos t \ \sin t]^T \mid t \in [0, 2\pi)\}$

 Like tracing out the path of a particle over time; the variable t is the "parameter."

CMSC 435 / 634

Math 5/6

CMSC 435 / 634

Math 6/6