Ruby

Intro

e Ruby was first released in 1995 by Yukihiro "Matz" Matsumoto

= |t took several years to gain popularity outside of Japan
e |In 2004, Ruby's popularity increased with the release of the Rails package
e Currentversionis 2.5.0

Technical Details

e |sascripting language

e |svery object oriented
= Everythingis an object!

* The original interpreter was replaced with YARV (Yet another Ruby VM) in 2009
m |eadtoalarge performance boost

e Great support for both text processing as well as interacting with the OS

Popular Projects in Ruby

e Ruby on Rails
= A popular web framework, an alternative to PHP
e GitHub's Linguist
= The code responsible for determing the language a file is written in
e Homebrew
= A Linux style package manager available for MacOS
e Vagrant
= Software to manage VMs

Running Ruby

e Ruby is rundifferently depending on if it is interactive or batch mode
e Theinteractive ruby interpreter is launched using the command i rb
e Torun an existing file, use the ruby command

= Filesusuallyendin . rb

Integers

e Everythingis an object!! Including integers
5.+(4) == 5 + 4

e There are two integer types, Ruby will switch between them as needed
= Fixnum
= Bignum

In [

In [

]:

]:

5.+ (4)

5 + 4

5.class

In

]:

alot = 200 ** 200
puts alot
puts alot.class

Integer Methods

e Thereis no decrement or increment method, so code needs to use something like

counter += 1
counter = counter.next

e Conversion methods
m 5.to s
= 5.to £

e Common mathemetical methods
m _abs

B _even?
= 5[0]

In []: 10.next

In []: -1.abs{()

In []: puts l.even?
puts 2.even?

In [

In [

]:

]:

print 5[0],

S[1],

print 4([0],

4[1],

Floats

e Floatsin Ruby are double precision, so they can overflow
e Most standard mathematicl methods are available

m 10.50.ceil

= 10.50.round

= 10.50.to i

= 10.50.to r

In

In

In

In

10.50.to_i

10.5.to r

10.49.round

10.49.ceil

Strings

e Strings can be single or double quotes
= Single quotes strings don't evaluate escapes like \n, etc.
e Variable interpolation is available in double quoted strings only
= Thesyntaxis # {varname}
e Many string methods exist in two forms
= Those that return a string are named normally
= Those that modify the string in place have a ! at the end of the method
name

In [

In [

In [

]:

]:

]:

str = "A string. A nother"
int = 10

Str.upcase

str.capitalize

In

In

In

str.downcase!
puts str

str.length

str.ascii only?

In

In

puts
puts

puts
puts

" SO000 many spacess and
" SO0000 many spacess and

str.include? ("ri")
str.include? ("ro")

such".squeeze
such".squeeze ("

S")

In []:| puts "Hello, you are #{str}"
puts "Hello, you are #{str.upcase}"
puts "Hello you are a float now: #{int.to f}"

Arrays

e Arrays are Ruby's list type
= They are heterogenous
e They can be created using the Array constructor

Array.new (capacitiy,initial)

e The shortcut syntax toinitialize an array is
var = [lr 2/ 3/ 4]

Array Indexing

e Ruby supports negative indexing from the end of the array
e Ruby also has two ways to get a subsection of the list
B array[index, howmany]

B array[start..end]
o Must have a value for end, could be -1

arr = [10,20,4,06,7,1,20,0,nil]
puts arr[0]
puts arr[-2]

puts arr[1l,2]
puts arr[4,1]

puts arr[0..2]
puts arr[5..-1]

Array Methods

e There are many many array methods

e Common/Interesting ones are:
= _push/.pop
= _compact-removesnil elements
" .uniqg

® _inspect

In [

In [

In [

]:

]:

]:

puts arr.compact

puts arr.uniqg

puts arr.inspect

Set Operations

e Arrays can also be used like sets, by applying set operations between two arrays
= & - Set Intersection
= |-Set Union

e Thereis also the difference operator, but this isn't set difference

In

In

In

In

Hashes

e The associative array structure in Ruby is a hash
e Canbedeclared using Hash . new, but is often initialized expclicitly
hash = {'keyl' => 'vall' , 'key2' => 'val2',}

e The key can be any type

e Toset adefault value for keys not in the hash, pass it as a paramter to the
constructor

In

hashl = {'google' =>
'state of maryland'

hash2 = Hash.new (0)

puts hashl

puts hash?2

'www.google.com',
=> 'md.gov'}

'umbc'

=>

'umbc.edu',

Hashes

* Indexing into hashes is done using square brackets ([1) like arrays

e New keys can be added by using square brackets as well
e Common hash methods
m _keys/ .values

= .has key?
" _delete

B invert

In []: | puts hashl['google']

In []: puts hashl['something']

In []: puts hash2['not here']

In

In

In

puts hashl.keys

puts hash2.has key? ("not here")

hash2["not here"] = 10
puts hash2.invert.inspect
hash3 = hash2.invert

puts hash3['missing']

Control Structures

o |f
= then isoptional, but exists
" elsif
e Case
= Uses keyword case
= Cases are denoted using when
o Can be any logical statement

In

]:

if 10 > 11 then puts "HMMM" else puts "Seems good" end

a =1
b = 2
if a > b

puts "#{a} is bigger than #{b}"
elsif a == Db

puts "#{a} equals #{b}"
else

puts "#{a} is less than #{b}"
end

result = 1if a > Db
"#{a} is bigger than #{b}"

elsif a ==

"#{a} equals #{b}"
else

"#{a} is less than #{b}"
end

puts "I have compared #{a} and #{b} and have determined that #{result}"

In

]:

case "Hello"
when /"A/
puts "You start with an A"
when /"H/
puts "You start with an H"
else
puts "You start with something else"
end

In

]:

number = 10
case
when number % 2 ==
puts "#{number} is even"
when number $ 2 == 1
puts "#{number} is odd"
end

For Loops

e Thereis no count-based for loop in Ruby
e The for-in loop takes its place, and it useful, but there is a much better solution in
Ruby

for var in array
#Do something
end

In

]:

arr = [1,2,4,"Thing",nil]
for el in arr

puts el
end

In

[

]:

hash = {'today'

for el in hash
puts el

end

=> "Thursday",

"tomorrow" => "Friday"}

In

[

]:

hash = {'today' => "Thursday", "tomorrow" => "Friday"}
for k,v in hash

puts "#{k.capitalize} is #{v}"
end

Iterators

e Almost every object has at least one method that is an interator
e Thisis a special method that you can provide a block of code to
= The block can be one line between curly braces
= Can be multiple lines,denoted by do |vars| ... end

Common lterators

e |ntengers

B times

= _upto/.downto
e Arrays and Hashes

" _each
e Strings

" .each line
® .each char

In [

]:

5.times {puts "Hi"}

]:

5.upto(10) do
puts i * 1
end

|1]

5.downto (10)
puts i * 1
end

do

|1

In

]:

hash = {'today'
hash.each {|k,v]|

=> "Thursday",

"tomorrow" => "Friday"}

puts "#{k.capitalize} is #{v}"}

In

str long = "This is a really long string\n I have put some new line characters\n t
0 see what happens"
str long.each line do [1|
puts l.strip
end

In

]:

str long.each char do |[1|
puts l.strip
end

Methods

e Methods in Ruby are defined using the de £ keyword

e They don't need to be in aclass
e Global variables in Ruby must start witha $

e To process a block, use the yield keyword

[

]:

def square (i)
i * 1

end

square (10)

In

In

[

]:

]:

def wrapper (i)

yield
end

wrapper (10)

{puts

"Hello"}

In

In

def wrapper with var

x = yield("Hello")

puts "Yield returned #{x}"
end

wrapper with var do [i|
puts "1 was passed as #{i}"
i.downcase

end

Process Control

e Ruby is often used as a nicer system scripting language
e The method systemwill run the enclosed commands, returning true or false
e Toget data back from a system call, it needs to be opened using the 10 class
" TO.popen {block}
= The block takes one parameter, a stream, that we can use to gets data
from

In

IO0.popen("ls -1h *.html") do |stream]
while line = stream.gets do
parts = line.split ("™ ")
puts "#{parts[-1]} is #{parts[4]} big"
end
end

In

IO0.popen("ls -1h *.html") do |stream]
stream.each do |line]
parts = line.split ("™ ")
puts "#{parts[-1]} is #{parts[4]} big"
end
end

Objects

¢ You can make your own objects....because everything is an object
e Prefix with the class keyword
= Name must start with a capital letter
* A member variable should start with @
= This makes it private
e The constructoriswrittenas intialize

e Getters have the same name as the variable you are trying to get, setters do too,
but end with =

In

]:

class TIME

def initialize (hour,min)
@hour = hour
@min = min

end

def hour
@hour
end

def hour= (nHour)
@hour = nHour
end

def to s
"It's #{Qhour}:#{Q@min}"
end
end

In

now = TIME.new (11,15)
puts now

Objects Continued

e Tooverload an operator, use the literal operator name
= Tooverload +, define + in your class
e Classes in Ruby are open, meaning they can be added to at any time
= The syntaxis the same, and methods are either added or overwritten
= This applies to classes that are defined as part of the Ruby langauge too!

In []: class TIME

def min
@min
end

def + (anotherTime)
TIME.new (self.hour + anotherTime.hour,
self.min + anotherTime.min)
end
end

In []: puts now + TIME.new(11,12)

In

In

class Array
def beMean
self[0] , self[-1] = self[-1],
end
end

arr = [1,43,9,68,19,6890,185, 3]
arr.beMean
puts arr

self[0]

Gems

e Packages in Ruby are known as Gems
e The gem command line program is usually installed when installing Ruby

gem install packageName

e The mainrepository is RubyGems.org

https://rubygems.org/

