PHP V

Package Managers

e The PHP community has largely relied on two package manager/ package
repositories
= PEAR
= Composer/Packagist
e PEAR is the PHP Extension and Appplication repository
= Was the system of choice for many years
= Not commonly reccomended anymore

Composer

e Composer has become the PHP package manager of choice for most developers
e |sa PHP script itself, run from the command line

= composer.phar is a PHP archive of executable code
e Configured using JSON file composer. json

e Dependenciesinstalled using php composer.phar install

https://getcomposer.org/

Composer.json

e The composer. json fileis an object that uses many keys to specificy the
configuration
e For pure package management, the most important key is require

e The value of require is an object whose keys are packages and whose values are
package versions

|'require': {|
"ezyang/htmlpurifier"
}

">O . O"

Using Packages Installed with Composer

e Packages places all libraries installed inside the vendor directory in whatever

directory it was run from
= Each PHP project has its own composer. json
e When installing packages, composer updates its own autoloader script, so to

include all libraries, just add
require once @ DIR . '/vendor/autoload.php';

Packagist

e The default repository used by Composer is Packagist

e Other repos can be specified by using the repositorykeyin composer. json

e New packages are published by using composer. json with some additional keys
e Alist of popular libraries can be found at https://phptrends.com/

https://packagist.org/
https://phptrends.com/

In

In

require once @ DIR . '/vendor/autoload.php';

Sfaker = Faker\Factory::create();
echo $faker->name;

echo Sfaker->address;

echo $faker->text;

Frameworks

e Writing large webapps requires a lot of boilerplate code
= Templating Engines
= Making Database Requests
= Organizing Codebases
= Security
= Processing Forms

Popular Frameworks

e Asthe community matures and best practices emerge, a few frameworks have
bubbled to the top
= Codelgniter
= CakePHP
= Laravel

Codelgniter Example

Sthis->load->database () ;
S$query = Sthis->db->get ('table name');

foreach (Squery->result() as Srow)
{
echo Srow->title;

}

Debugging

e Logfiles
= The first place you normally look for an error are the log files created by
the PHP module of your webserver
» Thereis one PHP module for everyone on GL, so for security reasons
you can't access this
e Sending Errors to Client
= Explicitly Printing
= Telling PHP To report them

Var_Dump

* var dump isaverysimilar commandtoprint r,butcontains moreinformation
good for debugging
= The object type is part of the output
= The length of arrays are output

In [J: $obj = Jjson decode('{"a":1,"b":2,"c":3,"d":4,"e":5}");
echo print r($Sobj, true);

In [1: var dump (Sobj)

Printing Errors

e By default, any errors encountered during the execution of a PHP script are only
written to the log, and not the screen
= This is for security reasons
* Toforce error reporting use the function ini_set

ini set("display errors", 1);
* To control the level of errors that get reported, use the error reporting
function

error reporting(E ALL);

Available to view at
https://www.csee.umbc.edu/~bwilk1/433/php examples/errors on.php

<?php

?>

7>

error reporting(E ALL);
ini set("display errors", 1);

Saliens title by release year[1979] = "Alien"; #
Saliens title by release year[1986] = "Aliens"; #
Saliens title by release year[1992] = "Alien 3"; #
$aliens title by release year[1997] = "Alien: Resurrection"; #

<hl>Warnings & Errors On</hl>

foreach (array keys(Saliens title by release year) as Skey) {
print "$key: Saliens title by relaese year[Skey]</1li>";
}

good
good
eh...
avoid

https://www.csee.umbc.edu/~bwilk1/433/php_examples/errors_on.php

Security

e PHP is one of, if not the most popular point to start a cyberattack

e PHP provides an interface between strangers and your server

e |tisimperative you consider the security implications of your PHP script, not just
for you, but for other users of your page

Password Hashing

e PHP is commonly used to build log in systems

e Storingusers passwords is a serious responsibility

e Using frameworks is one way to prevent mistakes

* The other is to use the built in functions password hashand

password verify
= Requires PHP 5.5+ aka not GL

In []: $my password = 'passwordl234';
echo password hash ($my password, PASSWORD DEFAULT) ;
echo password hash ($my password, PASSWORD DEFAULT) ;

In []: S$hashl = password hash ($my password, PASSWORD DEFAULT) ;
echo password verify($my password, $hashl);
echo password verify ('password',Shashl);

Input Validation

e A major vulerability is also one of PHP's greatest strengths
= Accepting user input
* We will talk about a few very specific issues in a bit, but in general you should
always verify your input to be what you expect it to be
e PHP has two methods to help with this
= filter var
= filter_input

Filtering

e |nput filteringis checking if the input given matches the expected format
e The two methods mentioned before use constant to check the input
= This is only a first pass, more specific filtering should be done based on
your app needs
e Common filters
= FILTER_VALIDATE_EMAIL
= FILTER_VALIDATE_URL
= FILTER_VALIDATE_IP

In

In

smy email = "bryan.wilkinson@umbc.edu";
filter var(Smy email, FILTER VALIDATE EMAIL);

smy bad email = "<script>doEvil();</script>Qumbc.edu";
filter var(Smy bad email, FILTER VALIDATE EMAIL);

Sanitizing

e An alternative to filtering is to sanatize your input
e This removes harmful characters from the input
= |tis considered less secure, because if an attacker knows this is
happening, they can try an be clever to get around it
e Bettertorejectif you can

Sanitizing

e Santitizing uses the same functions, but with different constants
e Common constants for sanitization are

= FILTER_SANITIZE_EMAIL

= FILTER_SANITIZE_URL

= FILTER_SANITIZE_STRING

In

smy email = "bryan.wilkinson@umbc.edu";

smy bad email = "&34;script>doEvil ();</script>@umbc.edu";
echo filter_var($my_email,FILTER_SANITIZE_EMAIL);

echo filter var ($my bad email, FILTER SANITIZE EMAIL);

Network Request Security

e Another common vulerability is to trust encrpyted data, which is still vulernable
to man-in-the-middle attacks

e To prevent against this, you should explicity tell PHP to ensure that the response
of the network request is from the server requested

Scontext = stream context create(array('ssl' => array('verify peer' => T
RUE))) ;

$body = file get contents('https://api.example.com/search?g=sphinx', fal
se, Scontext);

In []: S$context = stream context create (
array('ssl' => array('verify peer' => TRUE)));
Sbody = file get contents('https://www.umbc.edu', false, Scontext);

SQL Injections

e Wedidn't cover using PHP with databases in this course, but it is a very common
use of them

e Usinguser input directly inan SQL query is a very bad idea
= Canleak data

= Can leak information about your database set up
e Stepstoreduce

= Valdiate data first
= Escape input or use prepared statements

Example from https://php.earth/docs/security/sal-injection

Squery = "SELECT username, email FROM users WHERE id = ?";
$stmt = Smysqgli->stmt init();

if (Sstmt->prepare (Squery)) {
$stmt->bind param("i", $id);
Sstmt->execute () ;
Sresult = $stmt->get result();
while ($row = Sresult->fetch array (MYSQLI NUM)) {
printf ("%$s (%s)\n", S$row[0], S$Srow[l]);

https://php.earth/docs/security/sql-injection

Code Injection

e Another danger is someone including their own PHP into your code
e This can happen when:

= cvalisused

= Auserinputispassedtoincludeor require

= A file name is passed to open

Preventing Code Injection

e Don'tuseeval
e |f you are doing dynamic includes, use a switch statement or something, and don't

directly just use the variable
e Validate your filenames, and don't use a filename directly

Directory Traversal

e Another danger about files and file names is directory traversal
e A malicous user could send the file name / or . . / and get somewehre they
shouldn't
= Explicity check for filenames start with this
= Run standard filtering and sanitation on file names
= Don't use the user supplied file names!

Cross Site Scripting

e A major danger to users of your site is cross-site scripting
= |f your database is comporimised, it could be placed there
= |t could be done through public content through a form like comments
e Escape escape escape
= |f you are sending user generated content back to the client, use
HTMLPurify library

http://htmlpurifier.org/

SuntrustedHtml = "<script><iframe src=''></script>Hello";

$config = HTMLPurifier Config::createDefault();

Sconfig->set ('HTML.Allowed', 'p,b,alhref],i'); // basic formatting and links
Ssanitiser = new HTMLPurifier ($confiqg);

Soutput = S$sanitiser->purify (SuntrustedHtml) ;

