
R

Control Structures, Functions, and Objects

If Statements

The if statement in R is very C like in it's syntax

Addition else if clauses have the syntax of

if (condition) {
} else {
}

else if (condition) {
 }

In []: ## This won't work, else needs to be on same line as end of if
if(4 > 5) {
 print("Bad Math")
}
else {
 print("Seems right to me")
}

In []: if(4 > 5) {
 print("Bad Math")
} else {
 print("Seems right to me")
}

In []: a <- 4
b <- 2
if (a %% b == 0)
{
 print(paste(a,"is even"))
} else {
 print(paste(a,"is odd"))
}

In []: ## Produces warning only, probably not the intended test condition
vec1 <- c(2,4,6,8)
if(vec1 %% 2 == 0){
 print("All elements are even")
} else{
 print("Not all elements are even")
}

In []: vec1 <- c(2,4,6,8)
if(all(vec1 %% 2 == 0)){
 print("All elements are even")
} else{
 print("Not all elements are even")
}

If Tricks

if on the right hand side of an assignment

The ifelse function to apply to vectors

var <- if (condition){
 value
 }
 else{
 value
 }

ifelse(expression_generating_boolean_vector, value_if_true, value_if_fa
lse)

In []: num1 <- 100
num2 <- 1000
largest_num <- if(num1 > num2){
 num1
} else {
 num2
}
print(largest_num)

In []: float <- 100.004
truncated <- if (float %% 1 != 0){
 float %/% 1
} else{
 float
}
print(truncated)

In []: vec3 <- 1:10
print(ifelse(vec3 %% 3 == 0,
 "Is Divisible by 3",
 "Isn't Divisibly by 3"))

In []: vec4 <- -5:5
print(ifelse(vec4 < 0,-1,1))

Switch Statement

R doesn't have a switch statement, only a switch function

The switch function takes an expression, followed by a list of things to return if
matched

With out any parameter keywords, the expression needs to be an
integer
When using keywords, a parameter with out a keyword is assumed to
be a default value

switch(expression, value1, value2, value3...)
switch(expression, key1 = value1, key2 = value2, default)

In []: word <- switch(3,"one","two","three","four","five","six","seven")
print(word)

translation <- switch(word, one="uno",two="dos",
 three="tres",four="quatro",
 "un numero")
print(translation)

print(switch("seven", one="uno",two="dos",
 three="tres",four="quatro",
 "un numero"))

For Loops

For loops in R look like for-each loops, but are still numeric
The function seq_along(X) produces the sequence of indices for a given
object to loop through

Many libraries exist that attempt to produce better, faster for loops

for(var in integer_vector){
 }

In []: for(i in 1:5){
 print(i ^ 2)
}

In []: print(mtcars)

In []: ## How can I make this print thet names of the column?
for (feature in seq_along(mtcars)){
 print(paste("The median is",
 median(mtcars[[feature]])))
}

Logic Controlled Loops

R offers only one truly controlled logic loop, the standard while loop

R also provides a repeat loop, which repeats forever, and must be broken out of
explicitly

while(condition){
 }

repeat{
 if(condition) break
 }

In []: haystack <- c(1,34,5,5,1,4,6,0)
i <- 1
while(haystack[i] != 6){
 i <- i + 1
}
print(paste("I found 6 at position",i))

In []: end <- 1
repeat{
 print("This is the song that never ends, yes it goes on and on my friends,
 some people started singing it not knowing what it was, and they will
 keep on
 singing it forever just because...")
 if (end == 10) break
 end <- end + 1
}

Lapply

Often times we are just looping over a data structure in R to apply a function to
every member

The R function lapply does this without writing out the entire loop
This is the �rst of many functional programming style statements we will
encounter in R

Entire libraries have been created to further this style of programming
lapply(data,function)

In []: ## What is the return type do you think?
results_l <- lapply(mtcars,median)
print(results_l)

In []: ## What is the return type do you think?
results_s <- sapply(mtcars,median)
print(results_s)

Functions

A function in R is declared using the syntax

The result of this is assigned to a variable which is then used as the function
name

function(parameter list){
 function body
 }

In []: my_first_function <- function(){
 print("Hello!")
}

my_first_function()

In []: my_second_function <- function(a,b,c){
 print(a * b + c)
}
my_second_function(1,2,3)

Returning From Functions

To explicitly return from an R function, use the return function
Note that this is a function, not a statement, and requires parentheses

If no return function is called, an R function will return the value of the last
expression of the function by default

return (x)

In []: explicit_return <- function(a,b)
 {
 return (a %/% b + a %% b)
}
print(explicit_return(20,3))

In []: implicit_return <- function(a,b)
{
a %/% b + a %% b
}
print(implicit_return(20,3))

Function Practice

Use lapply and a function to return the squares of all numbers from 1 to 25

Function Parameters and Arguments

R provides a wide variety of parameter options
Keyword parameters
Default parameters
Positional parameters

R also allows a list to provide the arguments to a function, using the do.call
function
do.call(function_name, list_of_arguments)

