bash

I/0, Processes, and Math

User Input

e User input is gotten by using the read command

e The general syntax s
read [OPTIONS] variable name

e Common options are:
= -p <text>: Prompt the user with text before getting input
= -s: Do not display the text the user types (for passwords, etc)
= -t <time>: Time out after the given number of seconds

In

#Example Code Can't be Run in Browser/Jupyter
echo "Enter some text:"

read text
echo "You entered Stext"

In []:| #Example Code Can't be Run in Browser/Jupyter
read -p "Enter some more text: " more text
echo "Now you are telling me S$more text"

In

#Must be -sp, -ps means '"s" is the argument of -p
read -sp "Enter the secret word: " secret

#Not printing characters means that we need to
#explicitly move to the next line

echo
echo "Was I supposed to keep Ssecret a secret?" ~

In

echo -n "Enter something quickly!: "

read -tb5
if [[—n
echo
else
echo
echo
fi

user input
Suser input]]; then
"Congrats! You beat the clock"

"Too Slow! Better luck next time"

Mapfile

e Themapfile commandreads STDIN into an array, breaking it up at newlines

e Eventhough it reads from STDIN, it primarily used with the pipe character or
redicrects

= Not used for user interaction
e Thesyntaxis

mapfile [OPTIONS] array variable

mapfile numbers<<HERE

g w N

HERE

for number in ${numbers[@]}; do
echo -n "Snumber, "

done

echo

Reading A File with a Loop

e Themapfile command is generally more efficient, but is a recent addition to
bash

e |f youwant to do something more than just read the lines in, it can still be useful to
use a loop

e Reading afile in aloop combines three techniques
= Awhileloop

= Areadcommand
= |nput redirection

while read line; do
echo $line
done < data/numbers.txt

0

w N -

Processing a File Practice

e Readin afile named data/words.txt, and find the longest word in the file

max=""
while read line; do
for word in $line; do
if [[${#word} -gt ${#max}]]; then
max=Sword
fi
done;
done < data/lines.txt

echo Smax;

interconnection

Formatted Output

e The printf command allows output to be formatted with more control than
echo
e |t uses asyntaxsimilar to most formatted strings you are familiar with
= Based on printf from C
e Newlines are not automatically added
e Thevariables to print are given as arguments to the print f command after the

format string

printf "%d is a number\n" 30

printf "%10d is a number\n" 30

printf "%010d is a number\n" 30

printf "%-10d is a number\n" 30

printf "%d is a big number\n" 10000000000

printf "$'d is a big number that is easier to read" 10000000000

30 is a number
30 is a number
0000000030 is a number
30 is a number
10000000000 is a big number
10,000,000,000 is a big number that is easier to read

printf "$f is a float\n" 30

printf "$f is a float\n" 30.1345

printf "%.2f is a truncated float\n" 30.12345

printf "$'.2f is a truncated , yet big, float" 3000000000.12345

30.000000 is a float

30.134500 is a float

30.12 is a truncated float

3,000,000,000.12 is a truncated , yet big, float

printf "%s is a string\n" "Hello there"

#A11l Arguments are always printed

printf "%s was passed as an argument\n" Hello there
printf "%3s doesn't truncate the string\n" "A long string"
printf "%.3s does truncate the string\n" "A long string"
printf "%10.3s truncates the string\

, but prints with a width of 10" "A long string"

Hello there is a string
Hello was passed as an argument
there was passed as an argument
A long string doesn't truncate the string
A 1 does truncate the string
A 1 truncates the string, but prints with a width of

10

Other Uses of print£f

e Two rather unique format types are
= 3gwill escape your string into an appropriate format for bash

m 3 (fmt) T converts seconds into a user specified date string
o fmt is other format commands for dates, similarto strftime
functioninC

printf
printf
printf
printf

g "A directoryname with spaces/"
"\n"

"$ (%A the %d of %B, %Y, at %r)T\n" -1
"$ (%A the %d of %$B, %Y, at %$r)T" O

A\ directoryname\ with\ spaces/
Monday the 19 of February, 2018, at 04:47:10 PM

Wednesday the 31 of December, 1969, at 07:00:00 PM

Running Other Scripts

e Other scripts can always be run like other commands, simply by calling them
e |f you want to have access to all the variables, including function definitions, use
the source command
= Thesingledot . is an alias for the source command

. lots of definitions
source other_definitions

more src/shell/definitions.sh

#!/bin/bash

pi=3.1415

e=2.7182

zero=0.0000
alphabet=(ABCDEFGHIJKLMNOPOQRSTUVWIXY Z)

./src/shell/definitions.sh
echo $pi

src/shell/definitions.sh
echo ${alphabet[*]}

ABCDEPFGHIJKLMNOPQRSTUVWIXYZ

Process Management

e When calling other commands it is useful to know how to control processes
e Common process control commands are
= COMMAND & -executes command in background

" bg JOB_SPEC -sends command to background
» fg JOB_SPEC - brings background command to foreground

e |f you are using the shell interactively
= jobs list all currently running processes launched from this shell

= pslist all processes on the computer

ps Command

e When you have many processes running its useful to know how to query them

e The ps command by default displays the pids for processes launched from this
shell

e Common options are

-A: display all processes on the system

-f: display more information, such as who started the process

-F: display even more information

-o<format>: customize the information displayed

-u<user>: display all processes launched by user

In [3]: Ps

PID TTY TIME CMD
12325 pts/4 00:00:00 bash
12470 pts/4 00:00:00 ps

In

ps —-f -ubryan | more

UID PID PPID C STIME TTY TIME CMD

bryan 1384 1 0 Feblo ? 00:00:00 /lib/systemd/systemd --user
bryan 1385 1384 0 Feblo ? 00:00:00 (sd-pam)

bryan 1401 1232 0 Febl6 ? 00:00:00 -fish -c \/opt\/google\/chrome
-r

emote-desktop\/chrome-remote-desktop --start --child-process

bryan 1402 1401 O Febleo ? 00:00:00 /usr/bin/python2 /opt/google/c
hr

ome-remote-desktop/chrome-remote-desktop --config=/home/bryan/.config/chrome-r
em

ote-desktop/host#269f963d97dcad68f51b2a9fc1292735.json —--start --child-process
bryan 1488 1402 0 Feblo ? 00:00:06 Xvfb :20 -auth /home/bryan/.Xa
ut

hority -nolisten tcp -noreset -screen 0 1536x864x24

bryan 1780 1402 0 Feblo ? 00:00:00 /bin/sh -c /home/bryan/.chrome
-r

emote-desktop-session

bryan 1782 1780 0 Febl6 2 00:00:00 /bin/sh /etc/xdg/xfced/xinitrc

- /etc/X1ll/xinit/xserverrc

bryan 1783 1402 0 Feblo ? 00:00:01 /opt/google/chrome-remote-desk
to
p/chrome-remote-desktop-host --host-config=- --audio-pipe-name=/home/bryan/.co
nf

ig/chrome-remote-desktop/pulseaudio#269£963d97/fifo output --server-supports-e
xa

ct-resize --ssh-auth-sockname=/tmp/chromoting.bryan.ssh auth sock --signal-par
en

t

bryan 1806 1782 0 Febleo ? 00:00:00 xfced-session

bryan 1807 1384 0 Feblo ? 00:00:01 /usr/bin/dbus-daemon --session

—address=systemd: --nofork --nopidfile --systemd-activation

Kill

e Despiteit'sname kill isamore general command then just ended processes
e The kill command can send signals to running processes
= The signal can be sent using either its numerical value or name
o -9or-SIGKILL
= Toseeafulllistusekill -1
e Syntax
kill SIGNAL PID

In

In

In

In

[1]:

[3]:

[9]:

[8]:

Launch a random background job
htop &

[1] 12581

kill -15 12581

jobs

kill -9 12581

The nohup Command

e One signal sent to processes is SIGHUP which is sent when a terminal closes
= Comes from hang up
= This will generally kill processes
e |f we have along running background task that we want to continue after the
terminal is close, use the nohup command
nohup COMMAND &

Command Substitution

e We've used it a few times, but formally command substitution runs a command
and returns it's output
e You may encounter two forms
" " command
" S (command)
e Always use $ (command)
= |tisnestable
= |tissafer

html files=$(find . -name "*.ipynb")
echo Shtml files

./Git.ipynb ./Lecture03.ipynb ./Lecturel0.ipynb ./Lecturel6.ipynb ./Lecturel2.
ipynb ./Lecture(05.ipynb ./Lecturel4.ipynb ./LectureOl.ipynb ./.ipynb checkpoin
ts/Lecture05-checkpoint.ipynb ./.ipynb checkpoints/Lecture06-checkpoint.ipynb
./ .ipynb checkpoints/Lecturel4-checkpoint.ipynb

ps_out=$§ (ps)

echo ${ps out::10}

PID TTY

nesting=$ (echo $(1s))
echo Snesting

an _empty file big files.txt binder data en.openfoodfacts.org.products.csv err
Git.ipynb helper scripts img Jjupyter-php-installer.phar Lecture0O.ipynb Lectur
e0l.ipynb Lecture(2.ipynb Lecture(03.ipynb Lecturel4.ipynb Lecture(05.ipynb Lect
ure06.ipynb out pngs scipy.log src test.sh upload words.txt

Command Substitution Practice

e Use command substitution to print all the ipynb files in the directory, with ipynb
removed

= Hint:Use ${var//pattern/substitute}

var=$(ls *ipynb)
echo ${var//.ipynb/}

Git Lecture00 Lecture(Ol Lecture02 Lecture03 Lecture04 Lecture(05 Lecturel6

Chaining Commands

e The s«s,| | ,and ; operators are used to chain commands together
= commandl && command?2 only executes command2 upon successful

exit of command1
= commandl || command?2 onlyexecutes command2 upon unsuccessful

exit of command1
= commandl ; command?2 always executes command?2

rm /home 2> /dev/null

[[1 —eqg 1]] && echo
[[1 —eq 2]] && echo
[[1 —eq 2]] || echo

You can't do that
That is true 1
That isn't true 2

| | echo "You can't do that"
"That is true 1"

"That is true 2"

"That isn't true 2"

Subshells

e Asubshellis a group of commands run in a separate shell from the current process
e Changes to variables in the subshell will not be reflected in the main script
e Can also be used to send an entire group of commands to the background
e Syntaxis
(COMANDS)

echo $ (pwd)
(
cd ~
echo $ (pwd)
)
echo $ (pwd)

/home/bryan/Teaching/CMSC433

/home/bryan
/home/bryan/Teaching/CMSC433

In

[19]:

printf "%'d is a big number\n" 1000000
(
LANG=es ES.UTF-8
printf "%'d is a big number\n" 1000000

)
printf "%'d is a big number\n" 1000000

1,000,000 is a big number
1,000,000 is a big number
1,000,000 is a big number

Parallel Execution

e Parallel execution can be achieved easily using subshells and backgrounding

processes
e Bash has a builtin command wa it that will pause the execution of the script until

all child processes have returned
e For more complex parallel applications, we will look at the GNU parallel suite of

tools

#Supress notification of completed background jobs
set +m

for letter in {A..M}; do
echo "$Sletter ";

sleep 0.5;
done;
) &
(
for number in 1 2 3 4 5 6 7; do
echo "S$number ";
sleep 0.25;
done
) &
wait

echo "EVERYTHING IS AWESOME"

[1] 13117
A
[2] 13119
1

HHEH 3o o 0 wdhhw

GNU Parallel

e GNU parallel is a collection of utilities to manage processes executing in parallel
e Theparallel command executes acommand in parallel given a list of

arguments separated by : : :
parallel echo ::: A B C ::: 1 2 3

e parallel --pipe allows parallel processing of STDIN

e The semcommand is useful to combine with backgrounded subprocesses to limit
how many run at a time

parallel echo ::: ABC ::: 1 2 3

QO QWWwE
WNEFE WN P WN P

parallel Jjupyter-nbconvert {} --to html ::: *.ipynb

[NbConvertApp] Converting notebook Git.ipynb to html
[NbConvertApp] Writing 256385 bytes to Git.html
[NbConvertApp] Converting notebook Lecture(00.ipynb to html
/usr/local/lib/python3.6/dist-packages/nbconvert/filters/datatypefilter.py:41:
UserWarning: Your element with mimetype(s) dict keys([]) is not able to be rep
resented.

mimetypes=output.keys())

NbConvertApp] Writing 563949 bytes to Lecture(00.html

NbConvertApp] Converting notebook Lecturel6.ipynb to html
NbConvertApp] Writing 298314 bytes to Lecture(06.html
NbConvertApp] Converting notebook LecturelOl.ipynb to html
NbConvertApp] Writing 323885 bytes to LecturelOl.html
NbConvertApp] Converting notebook Lecturel4.ipynb to html

]

]

]

]

]

] Writing 336999 bytes to Lecture(04.html
NbConvertApp] Converting notebook Lecture(05.ipynb to html

] Writing 315353 bytes to Lecture(05.html

] Converting notebook Lecturel2.ipynb to html

] Writing 317691 bytes to Lecture(02.html

] Converting notebook Lecture(03.ipynb to html

] Writing 293097 bytes to Lecture(03.html

In [23]: time (grep -P "\d\d\d-\d\d\d-\d\d\d\d" ~/Research/Data/wackypediaFlat.slim | wc -1

)
#grep -P "\d\d\d-\d\d\d-\d\d\d\d" ~/wackypediaFlat.slim | wc -1

257

real Om2.294s
user Om2.090s
SYyS Om0.204s

In [24]: time parallel --pipe --block 100M 'grep -P "\d\d\d-\d\d\d-\d\d\d\d" | wec -1' < ~/
Research/Data/wackypediaFlat.slim

11
18
20
16
13
11
17
10
9

7

16
14
21
15
8

12
13
10
9

12
2

In []1:| # There are better ways to do this, ie all in one search

for letter in {A..Z}; do

(
n=$ (grep -P " ($Sletter)\1" ~/wackypediaFlat.slim | wc -1)

echo "$n double Sletter's found"
sleep 0.5;

) &

done;

wait

In []1: | # There are better ways to do this, ie all in one search

for letter in {A..Z}; do
(

n=$ (sem --id $$ -J3 grep "${letter}${letter}" ~/wackypediaFlat.slim | wc -

1)
echo "$n double S$Sletter's found"
sleep 0.5;

) &

done;

sem —--wait —--id $$S

Splitting a File

e Splitting a file comes in handy when doing parallel processing, if you don't want to
orcan'tuseparallel --pipe
e The split command will automatically split a file according to various metrics, and
create new files with a suffix like "aa"
e Common options
= -n: Split into N chunks
= -|: Splitinto files with L lines
= -b: Split into files with B bytes in them

In []J: split -11 numbers.txt numbers aa

In []: 1s x*

In []: more numbersaa

Arithmetic

e bash supports only integer arithmetic natively
* The syntax to indicate arithmetic is double parentheses ((EXPRESSION))
e Variables do not need to be expanded inside the double parentheses (no $
needed)
e Standard operators are supported
= % is the module operator
= **isused for exponentiation

In

echo
echo
echo
echo

$((0 + 11))
$((10/6))

$((10 * 6))
$((10 5 6))

In

In

x=10

((x++))

echo $((x += 1))
echo $((x += 1))

echo $((3.14 + 11))

Floating Point Arithmetic

e |norder to perform floating point math, the bc command is used
= Theinputis STDIN
e Thesyntaxis very similarto C
= To determine the precision of the output, prefix the math with
scale=PRECISION;
= The defaultis to truncate all floating point numbers

In

bc
bc
bc
bc

echo
echo

<L
<<
<L
<<

"0+5"
"scale=2;10/6"
"scale=2;3.14 + 11"
"scale=2; sqgrt(9)"

"scale=2; c(0)" | bc -1
"scale=2; s((0)" | bc -1

