
bash

I/O, Processes, and Math

User Input

User input is gotten by using the read command
The general syntax is

Common options are:
-p <text>: Prompt the user with text before getting input
-s: Do not display the text the user types (for passwords, etc)
-t <time>: Time out after the given number of seconds

read [OPTIONS] variable_name

In []: #Example Code Can't be Run in Browser/Jupyter

echo "Enter some text:"

read text

echo "You entered $text"

In []: #Example Code Can't be Run in Browser/Jupyter

read -p "Enter some more text: " more_text

echo "Now you are telling me $more_text"

In []: #Must be -sp, -ps means "s" is the argument of -p

read -sp "Enter the secret word: " secret

#Not printing characters means that we need to

#explicitly move to the next line

echo

echo "Was I supposed to keep $secret a secret?" ~

In []: echo -n "Enter something quickly!: "

read -t5 user_input

if [[-n $user_input]]; then

 echo "Congrats! You beat the clock"

else

 echo

 echo "Too Slow! Better luck next time"

fi

Map�le

The mapfile command reads STDIN into an array, breaking it up at newlines
Even though it reads from STDIN, it primarily used with the pipe character or
redicrects

Not used for user interaction
The syntax is
mapfile [OPTIONS] array_variable

In [27]: mapfile numbers<<HERE

1

2

3

4

5

HERE

for number in ${numbers[@]}; do

 echo -n "$number, "

done

echo

1, 2, 3, 4, 5,

Reading A File with a Loop

The mapfile command is generally more ef�cient, but is a recent addition to
bash
If you want to do something more than just read the lines in, it can still be useful to
use a loop
Reading a �le in a loop combines three techniques

A while loop
A read command
Input redirection

In [28]: while read line; do

 echo $line

done < data/numbers.txt

40

1

2

3

Processing a File Practice

Read in a �le named data/words.txt, and �nd the longest word in the �le

In [35]: max=""

while read line; do

 for word in $line; do

 if [[${#word} -gt ${#max}]]; then

 max=$word

 fi

 done;

done < data/lines.txt

echo $max;

interconnection

Formatted Output

The printf command allows output to be formatted with more control than
echo
It uses a syntax similar to most formatted strings you are familiar with

Based on printf from C
Newlines are not automatically added
The variables to print are given as arguments to the printf command after the
format string

In [36]: printf "%d is a number\n" 30

printf "%10d is a number\n" 30

printf "%010d is a number\n" 30

printf "%-10d is a number\n" 30

printf "%d is a big number\n" 10000000000

printf "%'d is a big number that is easier to read" 10000000000

30 is a number

 30 is a number

0000000030 is a number

30 is a number

10000000000 is a big number

10,000,000,000 is a big number that is easier to read

In [37]: printf "%f is a float\n" 30

printf "%f is a float\n" 30.1345

printf "%.2f is a truncated float\n" 30.12345

printf "%'.2f is a truncated , yet big, float" 3000000000.12345

30.000000 is a float

30.134500 is a float

30.12 is a truncated float

3,000,000,000.12 is a truncated , yet big, float

In [38]: printf "%s is a string\n" "Hello there"

#All Arguments are always printed

printf "%s was passed as an argument\n" Hello there

printf "%3s doesn't truncate the string\n" "A long string"

printf "%.3s does truncate the string\n" "A long string"

printf "%10.3s truncates the string\

, but prints with a width of 10" "A long string"

Hello there is a string

Hello was passed as an argument

there was passed as an argument

A long string doesn't truncate the string

A l does truncate the string

 A l truncates the string, but prints with a width of 10

Other Uses of printf

Two rather unique format types are
%q will escape your string into an appropriate format for bash
%(fmt)T converts seconds into a user speci�ed date string

fmt is other format commands for dates, similar to strftime
function in C

In [40]: printf %q "A directoryname with spaces/"

printf "\n"

printf "%(%A the %d of %B, %Y, at %r)T\n" -1

printf "%(%A the %d of %B, %Y, at %r)T" 0

A\ directoryname\ with\ spaces/

Monday the 19 of February, 2018, at 04:47:10 PM

Wednesday the 31 of December, 1969, at 07:00:00 PM

Running Other Scripts

Other scripts can always be run like other commands, simply by calling them
If you want to have access to all the variables, including function de�nitions, use
the source command

The single dot . is an alias for the source command
. lots_of_definitions

source other_definitions

In [41]:

In [1]:

In [2]:

more src/shell/definitions.sh

./src/shell/definitions.sh

echo $pi

. src/shell/definitions.sh

echo ${alphabet[*]}

#!/bin/bash

pi=3.1415

e=2.7182

zero=0.0000

alphabet=(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Process Management

When calling other commands it is useful to know how to control processes
Common process control commands are

COMMAND & - executes command in background
bg JOB_SPEC - sends command to background
fg JOB_SPEC - brings background command to foreground

If you are using the shell interactively
jobs list all currently running processes launched from this shell
ps list all processes on the computer

ps Command

When you have many processes running its useful to know how to query them
The ps command by default displays the pids for processes launched from this
shell
Common options are

-A: display all processes on the system
-f: display more information, such as who started the process
-F: display even more information
-o<format>: customize the information displayed
-u<user>: display all processes launched by user

In [3]: ps

 PID TTY TIME CMD

12325 pts/4 00:00:00 bash

12470 pts/4 00:00:00 ps

In []: ps -f -ubryan | more

UID PID PPID C STIME TTY TIME CMD

bryan 1384 1 0 Feb16 ? 00:00:00 /lib/systemd/systemd --user

bryan 1385 1384 0 Feb16 ? 00:00:00 (sd-pam)

bryan 1401 1232 0 Feb16 ? 00:00:00 -fish -c \/opt\/google\/chrome

-r

emote-desktop\/chrome-remote-desktop --start --child-process

bryan 1402 1401 0 Feb16 ? 00:00:00 /usr/bin/python2 /opt/google/c

hr

ome-remote-desktop/chrome-remote-desktop --config=/home/bryan/.config/chrome-r

em

ote-desktop/host#269f963d97dcad68f51b2a9fc1292735.json --start --child-process

bryan 1488 1402 0 Feb16 ? 00:00:06 Xvfb :20 -auth /home/bryan/.Xa

ut

hority -nolisten tcp -noreset -screen 0 1536x864x24

bryan 1780 1402 0 Feb16 ? 00:00:00 /bin/sh -c /home/bryan/.chrome

-r

emote-desktop-session

bryan 1782 1780 0 Feb16 ? 00:00:00 /bin/sh /etc/xdg/xfce4/xinitrc

-

- /etc/X11/xinit/xserverrc

bryan 1783 1402 0 Feb16 ? 00:00:01 /opt/google/chrome-remote-desk

to

p/chrome-remote-desktop-host --host-config=- --audio-pipe-name=/home/bryan/.co

nf

ig/chrome-remote-desktop/pulseaudio#269f963d97/fifo_output --server-supports-e

xa

ct-resize --ssh-auth-sockname=/tmp/chromoting.bryan.ssh_auth_sock --signal-par

en

t

bryan 1806 1782 0 Feb16 ? 00:00:00 xfce4-session

bryan 1807 1384 0 Feb16 ? 00:00:01 /usr/bin/dbus-daemon --session

-

-address=systemd: --nofork --nopidfile --systemd-activation

Kill

Despite it's name kill is a more general command then just ended processes
The kill command can send signals to running processes

The signal can be sent using either its numerical value or name
-9 or -SIGKILL

To see a full list use kill -l
Syntax
kill SIGNAL PID

In [1]:

In [3]:

In [9]:

In [8]:

Launch a random background job

htop &

kill -15 12581

jobs

kill -9 12581

[1] 12581

The nohup Command

One signal sent to processes is SIGHUP which is sent when a terminal closes
Comes from hang up
This will generally kill processes

If we have a long running background task that we want to continue after the
terminal is close, use the nohup command
nohup COMMAND &

Command Substitution

We've used it a few times, but formally command substitution runs a command
and returns it's output
You may encounter two forms

`command`

$(command)

Always use $(command)
It is nestable
It is safer

In [10]:

In [11]:

In [12]:

In [13]:

html_files=$(find . -name "*.ipynb")

echo $html_files

ps_out=$(ps)

echo ${ps_out::10}

nesting=$(echo $(ls))

echo $nesting

./Git.ipynb ./Lecture03.ipynb ./Lecture00.ipynb ./Lecture06.ipynb ./Lecture02.

ipynb ./Lecture05.ipynb ./Lecture04.ipynb ./Lecture01.ipynb ./.ipynb_checkpoin

ts/Lecture05-checkpoint.ipynb ./.ipynb_checkpoints/Lecture06-checkpoint.ipynb

./.ipynb_checkpoints/Lecture04-checkpoint.ipynb

PID TTY

an_empty_file big_files.txt binder data en.openfoodfacts.org.products.csv err

Git.ipynb helper_scripts img jupyter-php-installer.phar Lecture00.ipynb Lectur

e01.ipynb Lecture02.ipynb Lecture03.ipynb Lecture04.ipynb Lecture05.ipynb Lect

ure06.ipynb out pngs scipy.log src test.sh upload words.txt

Command Substitution Practice

Use command substitution to print all the ipynb �les in the directory, with ipynb
removed

Hint: Use ${var//pattern/substitute}

In [16]: var=$(ls *ipynb)

echo ${var//.ipynb/}

Git Lecture00 Lecture01 Lecture02 Lecture03 Lecture04 Lecture05 Lecture06

Chaining Commands

The && ,|| , and ; operators are used to chain commands together
command1 && command2 only executes command2 upon successful
exit of command1
command1 || command2 only executes command2 upon unsuccessful
exit of command1
command1 ; command2 always executes command2

In [17]: rm /home 2> /dev/null || echo "You can't do that"

[[1 -eq 1]] && echo "That is true 1"

[[1 -eq 2]] && echo "That is true 2"

[[1 -eq 2]] || echo "That isn't true 2"

You can't do that

That is true 1

That isn't true 2

Subshells

A subshell is a group of commands run in a separate shell from the current process
Changes to variables in the subshell will not be re�ected in the main script
Can also be used to send an entire group of commands to the background
Syntax is
(COMANDS)

In [18]: echo $(pwd)

(

 cd ~

 echo $(pwd)

)

echo $(pwd)

/home/bryan/Teaching/CMSC433

/home/bryan

/home/bryan/Teaching/CMSC433

In [19]: printf "%'d is a big number\n" 1000000

(

 LANG=es_ES.UTF-8

 printf "%'d is a big number\n" 1000000

)

printf "%'d is a big number\n" 1000000

1,000,000 is a big number

1,000,000 is a big number

1,000,000 is a big number

Parallel Execution

Parallel execution can be achieved easily using subshells and backgrounding
processes
Bash has a builtin command wait that will pause the execution of the script until
all child processes have returned
For more complex parallel applications, we will look at the GNU parallel suite of
tools

In [20]: #Supress notification of completed background jobs

set +m

(

 for letter in {A..M}; do

 echo "$letter ";

 sleep 0.5;

 done;

)&

(

 for number in 1 2 3 4 5 6 7; do

 echo "$number ";

 sleep 0.25;

 done

)&

wait

echo "EVERYTHING IS AWESOME"

[1] 13117

A

[2] 13119

1

B

2

3

C

4

5

D

6

7

E

F

GNU Parallel

GNU parallel is a collection of utilities to manage processes executing in parallel
The parallel command executes a command in parallel given a list of
arguments separated by :::

parallel --pipe allows parallel processing of STDIN
The sem command is useful to combine with backgrounded subprocesses to limit
how many run at a time

parallel echo ::: A B C ::: 1 2 3

In [21]:

In [22]:

parallel echo ::: A B C ::: 1 2 3

parallel jupyter-nbconvert {} --to html ::: *.ipynb

A 1

A 2

A 3

B 1

B 2

B 3

C 1

C 2

C 3

[NbConvertApp] Converting notebook Git.ipynb to html

[NbConvertApp] Writing 256385 bytes to Git.html

[NbConvertApp] Converting notebook Lecture00.ipynb to html

/usr/local/lib/python3.6/dist-packages/nbconvert/filters/datatypefilter.py:41:

UserWarning: Your element with mimetype(s) dict_keys([]) is not able to be rep

resented.

 mimetypes=output.keys())

[NbConvertApp] Writing 563949 bytes to Lecture00.html

[NbConvertApp] Converting notebook Lecture06.ipynb to html

[NbConvertApp] Writing 298314 bytes to Lecture06.html

[NbConvertApp] Converting notebook Lecture01.ipynb to html

[NbConvertApp] Writing 323885 bytes to Lecture01.html

[NbConvertApp] Converting notebook Lecture04.ipynb to html

[NbConvertApp] Writing 336999 bytes to Lecture04.html

[NbConvertApp] Converting notebook Lecture05.ipynb to html

[NbConvertApp] Writing 315353 bytes to Lecture05.html

[NbConvertApp] Converting notebook Lecture02.ipynb to html

[NbConvertApp] Writing 317691 bytes to Lecture02.html

[NbConvertApp] Converting notebook Lecture03.ipynb to html

[NbConvertApp] Writing 293097 bytes to Lecture03.html

In [23]:

In [24]:

time (grep -P "\d\d\d-\d\d\d-\d\d\d\d" ~/Research/Data/wackypediaFlat.slim | wc -l

)

#grep -P "\d\d\d-\d\d\d-\d\d\d\d" ~/wackypediaFlat.slim | wc -l

time parallel --pipe --block 100M 'grep -P "\d\d\d-\d\d\d-\d\d\d\d" | wc -l' < ~/

Research/Data/wackypediaFlat.slim

257

real 0m2.294s

user 0m2.090s

sys 0m0.204s

11

18

20

16

13

11

17

10

9

7

16

14

21

15

8

12

13

10

9

12

2

In []: # There are better ways to do this, ie all in one search

for letter in {A..Z}; do

(

 n=$(grep -P "($letter)\1" ~/wackypediaFlat.slim | wc -l)

 echo "$n double $letter's found"

 sleep 0.5;

)&

done;

wait

In []: # There are better ways to do this, ie all in one search

for letter in {A..Z}; do

(

 n=$(sem --id $$ -j3 grep "${letter}${letter}" ~/wackypediaFlat.slim | wc -

l)

 echo "$n double $letter's found"

 sleep 0.5;

)&

done;

sem --wait --id $$

Splitting a File

Splitting a �le comes in handy when doing parallel processing, if you don't want to
or can't use parallel --pipe
The split command will automatically split a �le according to various metrics, and
create new �les with a suf�x like "aa"
Common options

-n: Split into N chunks
-l: Split into �les with L lines
-b: Split into �les with B bytes in them

In []:

In []:

In []:

split -l1 numbers.txt numbers_aa

ls x*

more numbersaa

Arithmetic

bash supports only integer arithmetic natively
The syntax to indicate arithmetic is double parentheses ((EXPRESSION))
Variables do not need to be expanded inside the double parentheses (no $
needed)
Standard operators are supported

% is the module operator
** is used for exponentiation

In []: echo $((0 + 11))

echo $((10/6))

echo $((10 * 6))

echo $((10 % 6))

In []:

In []:

x=10

((x++))

echo $((x += 1))

echo $((x += 1))

echo $((3.14 + 11))

Floating Point Arithmetic

In order to perform �oating point math, the bc command is used
The input is STDIN

The syntax is very similar to C
To determine the precision of the output, pre�x the math with
scale=PRECISION;

The default is to truncate all �oating point numbers

In []: bc <<< "0+5"

bc <<< "scale=2;10/6"

bc <<< "scale=2;3.14 + 11"

bc <<< "scale=2; sqrt(9)"

echo "scale=2; c(0)" | bc -l

echo "scale=2; s(0)" | bc -l

