Regular Expressions

Optimization, Python, and Git



Optimizing Regular Expressions

e Regular expressions are extremely powerful, but can be quite time consuming
e A Google search for "optimizing regular expressions" returns dozens of articles
and blogs about the subject
e My basic rules of thumb:
= Get it working first
= Don't be afraid to look for another solution



Why Regular Expressions can be Slow

e Some of this is implementation dependent, but regular expressions work by
going through a string one character at a time, looking for matches
= |f there are a lot of comparisons to be made at each character in the
string, this will slow the regex down

e Some regexes require backtracking to determine if there is a match or not

= The more backtracking, the longer the regex will take to execute

= A good resource on this is Catastrophic Backtracking

o Although written as an ad for their product, it does have a lot
of helpful information



http://www.regular-expressions.info/catastrophic.html

Optimization Tip 1

e Don't use regular expressions if you don't have to
= This is especially true if the pattern you are searching for is all literals

In [ ]: %%bash
time perl src/perl/slow.pl

In [ ]: %load src/perl/slow.pl



In [ ]: %%bash
time perl src/perl/fast.pl

In [ ]1: %load src/perl/slow.pl;



Optimization Tip 2

e Ifyoucan,use * and $ anchors
= Limiting where a match can occur can make a regex fail faster

In [ ]: %%bash
time perl src/perl/anchored.pl

In [ ]: %%bash
time perl src/perl/unanchored.pl



Optimization Tip 3

e Avoid quantifiers if you don't need to use them
e |f you need to use them, see if you can use the non-greedy version

In [ ]: %%bash
time perl src/perl/greedy.pl

In [ ] %%bash
time perl src/perl/nongreedy.pl



Optimization Tip 4

e Structure your alternations efficiently

= Alternations are searched left-to-righ, so put the (suspected) most
common first

In [ ]: %%bash
time perl src/perl/good_alt.pl

In [ ] %%bash
time perl src/perl/bad_alt.pl



Optimization Tip 5

e Use non-capturing groups

= |f you are just using grouping to apply a quantifier or something else
over a part of a pattern, consider a non-capturing group (?:pattern)

In [ ]: %%bash
time perl src/perl/capture.pl

In [ ]: %%bash
time perl src/perl/noncapture.pl



Regex in Python



Intro to re Module

e Regular expressions are not built into the core python language
= Available by importing the standard re module

e Matching and substitution are done using methods
e To avoid having to escape the \ character in Python so the regex can process use

araw string
= r'This 1s a raw python string\n'

In [ ]: import re



Simple Matching

e The re module has 4 methods to performing matching
= re.match
m re.search
= re.findall
= re.finditer
* All methods take the arguments (pattern, string, optional_flags)

In [ ]+ if re.match(r'needle',r'Is there a needle in this haystack?'):
print "match"

In [ ]: if re.search(r'needle',r'Is there a needle in this haystack?'):
print "match"



The Match Object

e Regular expressions don't evaluate to true or false in Python
= |famatchisfound,aMatchObject isreturned
= |f no match is found, None is returned
e TheMatchObject can be used to access groups found in the match, as well as
information such as position

In [ ]: re.search(r'needle',r'Is there a needle in this haystack?')

In [ ]: match = re.search(r'(\w+)\sneedle',r'Is there a needle in this haystack?')
print match.group(0)
print match.group(1)



re.findall and refinditer

e Rather than using a g modifier, Python has two specialized functions
e re.findall returns the groups themselves
e re.finditer returns aniterator over MatchObjects

In [ ]: re.findall(r'\b\w*a\w*\b', r'Is there a needle in this haystack?')

In [ ]: re.findall(r'\b(\w*)a(\w*)\b', r'Is there a needle in this haystack?')



Backreferencing

e Backreferencing works exactly the same in Python
e Python also allows named groups, but personally | find it messy

In [ ]: re.findall(r'(\w)\1', r'Is there a needle in this haystack?')

In [ ]: re.findall(r'(?P<a_letter>\w)(?P=a_letter)', r'Is there a needle in this haystac
k?')



Substitution

e Substitution is done using the re . sub method

re.sub(pattern, replacement, string, count=0, flags=0)

e re.subisglobal by default. To do only one substitution set the count

parameterto 1
e replacement can be either a string or a function that takes aMatchObject as

it's argument
e Back references are done using \1 instead of $1



Substitution Examples

In [ ]: re.sub(r'(\w)\1','oo',r'Is there a needle in this haystack?")

In [ ]: re.sub(r'(\w)\1',r'\1',r'Is there a needle in this haystack?')



Splitting Strings

e The re module can split strings using the split method
re.split(regex,string,limit, flags)

In [ ]: re.split(r'[aeiou]+',r'Is there a needle in this haystack?')



Using Flags

e Flagsin Python are constans of the re module
= re.l and re IGNORECASE are equivalent to the i modifier in Perl
= re.M and re MULTILINE are equivalent to the m modifier in Perl
e Touse multiple flags, you must "or" them together



Flag Examples

In [ ]: re.search(r'n(\w)\1dle',r'Is there a\n NOODLE in this haystack')

In [ ]: match = re.search(r'n(\w)\1dle',r'Is there a\n NOODLE in this haystack',6 flags =
re.I | re.M)

print match.start(), match.end(), match.pos, match.group(®), match.group(1)



Compliling Regular Expressions

e |f aregular expression is going to be used over and over again, you should
compile it to the languages internal representation
= Most languages have a concept of compilation
= |n Python, callingre.compile(pattern, flags) will returna

RegexObject
e The methods of a Regex0Object are mostly the same as the re module, but the
patternis no longer passsed as an argument



Compiling Regular Expressions Examples

In [ ]: regex = re.compile(r'n(\w)\1dle', flags = re.I | re.M)
if regex.search('iS ThERe a \nNOoDLE iN This HaYStaCK'):
print "Match"

print regex.sub(r"z\1\1", 'Is there a noodle in Baltimore?')

for match in regex.finditer('You shouldn\'t sew your clothes with a noodle, no m
atter how many needles you have'):
print match.group(0)



