
© 1999 by Ethan L. Miller 17-1

Network File Systems

• Background: what is a network file system?
• Naming

» Lookup

» Transparency

• Accessing remote files
» Client’s view of things

» Server’s view of things (stateful vs. stateless)

• Replicating files
» Performance

» Reliability

• Example systems

© 1999 by Ethan L. Miller 17-2

What Is a Network File System?

• Network (or distributed) file system (DFS) is
» File system distributed across many machines available from

one or more clients
» File system on one machine available from many clients

• DFS may manage tens or hundreds (or more) storage
devices

» Storage space may be broken into smaller pieces for easier
management

» Storage spaces may be physically located in different places

• A single storage space is usually the unit that clients can
choose to “import” (allow local users to access)

© 1999 by Ethan L. Miller 17-3

DFS Structures & Naming

• Server: machine that provides services to clients
» May be multiple servers per DFS
» Servers may provide different functions (naming vs. files)

• Client: process (also machine) that makes requests of servers
» Client interface specifies possible file operations (read, etc.)

» Client interface should be transparent: client process can’t tell
whether file is local or remote

• Naming: maps between logical names & physical objects
» Multilevel mapping hides the details of where the file is

physically located

» Transparent naming in DFS hides location in network where the
file is stored

» Name mapping may return multiple locations if there’s more
than one copy of the file in the DFS: this information is hidden
from the client

© 1999 by Ethan L. Miller 17-4

Naming & Transparency

• Location transparency: name doesn’t reveal where the file is
physically stored

» Name still corresponds to a specific set of blocks
» Sharing is convenient

» Name translation may be easier

» Can cause problems if server fails or administrator wants to
reorganize the FS (reallocate space)

• Location independence: name doesn’t change if file changes
physical location

» Makes it easier to share the entire storage space

» Separates naming issues from storage issues

» Makes creation of replicas easier



© 1999 by Ethan L. Miller 17-5

Approaches to Naming

• Files named by combining host name and name local to host
» Guarantees a unique systemwide name
» Causes problems if a file needs to be used

» Sample system: AFS

• Storage spaces (in the form of directory trees) attached to
local directory tree

» Looks like a single directory tree

» Only mounted directories can be accessed
» Directory mount points can be changed

» Sample system: NFS

• Totally integrated file system
» Single global name space for all files and all clients
» Unavailable server => some files and directories may not be

available

© 1999 by Ethan L. Miller 17-6

Accessing Remote Files

• Clients get files from servers when files are needed
• Clients often request the same files many times

» System executables

» User on client X always wants specific files of hers

• Reduce network traffic by keeping a copy of file blocks on the
client in a cache

» Fetch data from server if data not in cache

» Perform accesses on cached copy
» Write data back to server if it changes

» Files still have one master copy, but may have fragments
cached throughout many clients

» Problem: how does the DFS make sure that cached copies are
consistent (all the same) with each other and the master file if
one or more copies are written?

© 1999 by Ethan L. Miller 17-7

Caching Files: Memory or Disk?

• File data from a server may be cached on disk or in memory
• Advantages of memory:

» Workstations don’t need disks

» Memory is faster than disk

» Large memory can give big performance improvements

» Server caches are always in memory

• Advantages of disk:
» Cache can be larger than memory

» Data in cache survives reboot / failure

– No need to fetch after crash

– May be used to boot the system

» Data in cache is more reliable: delay writes to server longer

© 1999 by Ethan L. Miller 17-8

Caches & Writes to a File

• Write-through
» Data is written to the server as soon as it’s written to cache
» Reliable: client crash doesn’t cause lost data

» Poor performance: client has to write immediately

• Delayed-write
» Data is written to the server some time after it’s written to the

client cache

– If file is deleted first, no write to server occurs!
– If data is overwritten, only one write goes to server

» Reliability can be low: crash causes lost data

» Consistency can be difficult: caches hold modified data

» Several variations on policy:

– Write after data reaches a fixed age (often ~30 seconds)
– Write after file has been closed: write-on-close



© 1999 by Ethan L. Miller 17-9

Keeping Data Consistent

• Clients can keep copies of the same file
• One client might write the file - how do the others find out

about the change?
• Client-initiated approach

» Client checks with the server to see if the file has been updated
before using it

» Server then checks to see whether any other client has written
the file

• Server-initiated approach
» Server keeps track of which clients are caching and modifying

each file

» Server prevents consistency, perhaps by telling clients to
remove files modified elsewhere from their own caches

© 1999 by Ethan L. Miller 17-10

Stateful File Servers

• Server keeps track of which clients have opened which files,
and also keep information for each file opened by a client

» Current position in the file
» Blocks the client has modified

• When client opens a file
» Server fetches file info from disk, holds it in memory, and gives

the user an identifier for use with future accesses

» Server holds info in memory until file is explicitly closed

» Server can check security on file open and use cryptographic
methods to ensure that future accesses are from the same client

• Stateful file servers can perform better
» Fewer security checks

» Server can read ahead on the file if client reads sequentially

» Server can keep track of multiple clients who are accessing the
same file and manage consistency

© 1999 by Ethan L. Miller 17-11

Stateless File Servers

• Stateless file servers keep no per-client information
» Still allowed to cache inodes and file blocks in memory!
» Can’t keep track of which files are actually open or which client

is using them

• Individual requests are standalone
» Contain file identifier, offset in file, information on permissions

» File identifier need not be file name (usually inode number)

• No need for clients to open and close files
» Clients must still get a file identifier that corresponds to a

particular file name

» Server has to check permissions on every request!

• Performance can be slower than stateful, but
» Easier to recover from client or server failure

» Makes maintaining consistency easier (albeit slower)

© 1999 by Ethan L. Miller 17-12

Stateful vs. Stateless File Service

• Failure recovery
» Stateful server loses all of its volatile state in a crash - restores

state by communicating with clients
» Stateful server must be aware of clients that fail as well -

deallocate resources used to cache their files

» Stateful server & client barely notice that failure has occurred

– Server that fails simply comes back up - no per-client
information to recover

– Server has no info to reclaim for client that fails

• Consistency
» Stateless servers can’t easily maintain consistency themselves

» Stateful servers can track who’s caching which files

• Performance
» Stateful servers tend to be faster

» Stateless servers recover from failures faster



© 1999 by Ethan L. Miller 17-13

Replicating Files

• Problem: file server crashes => file unavailable (or even lost!)
• Solution: keep multiple copies of the file on different servers
• Benefits

» Improves availability & reliability

» May improve performance (get the nearest copy)

• Issues:
» Naming scheme must map name to a particular replica

– Pick the nearest or least loaded server

– Existence of replicas must be invisible to clients

» Consistency

– Updates must go to all replicas

– Consistency must be kept as if all replicas were a single file

© 1999 by Ethan L. Miller 17-14

NFS

• NFS (Network File System) is a classic distributed file system
• Naming

» Names are location transparent but not location independent

» Names need not be consistent between two clients

• Server state
» Stateless file servers: easier to recover from crashes (which

were relatively common when NFS was designed)

» Each request must contain all information necessary for the I/O,
including user & authentication info

• Replication
» No automatic replication

» Clients can keep copies in their local file systems

• Security
» Hah!

© 1999 by Ethan L. Miller 17-15

AFS

• AFS (Andrew File System)
• Naming

» Domains are mentioned as part of the name

» Names within a domain are location transparent & independent

• Server state
» Stateful file servers - slower & more complex recovery, but

better performance

» Authentication done only when the file is opened

• Replication
» Automatic replication is supported

» Clients can keep copies long-term locally, particularly if they
don’t change often (system files)

• Security
» Pretty good (uses Kerberos)


