
© 1999 by Ethan L. Miller 11-1

Implementing File Systems

• Basic file system structure
• Allocating disk blocks to files

» Deciding which blocks to include in a file
» Keeping track of the blocks in a file

• Managing free space on the disk
• Implementing directories

» Translating a human-readable name to a file identifier
» Keeping track of file metadata

• Improving file system efficiency & performance
» Using less disk space
» Making the file system faster

• Recovery: when file systems go bad

© 1999 by Ethan L. Miller 11-2

Basic File System Structure

• A file is
» A logical storage unit, tracked

as a whole by the file system

» A collection of logically related
information

• File system resides on
» Disks (usually)

» Tape (occasionally)

» Memory (RAM disk, flash
memory)

• File system organized into
logical layers: allows different
file systems to share code

• File metadata is stored in a file
control block (called an inode
in Unix)

OS interface

Directory routines:
lookup file, create file, etc.

File organization routines:
read & write file blocks

Low-level routines:
allocate & free disk blocks

Device drivers

Hardware (disks, etc.)

© 1999 by Ethan L. Miller 11-3

Using a File System: The OS View

• Opening a file
» Find the file and check to ensure that the user is allowed to

perform the desired operation (read, write, etc.)
» Allocate an entry in the “open file” table and return a “handle” to

it to the user (file descriptor)
» Process-only open file table vs. global open file table

• Closing a file
» Write out all changes to the metadata
» Deallocate the file control block in memory

• Mounting a file system: make a file system available to users
» Identify the file system’s position in the directory structure
» Locate the directory information on the disk
» Build structures in memory that allow the OS to use the file

system

© 1999 by Ethan L. Miller 11-4

Allocating Blocks to Files

• Files contain data stored in many file blocks
» File block is minimum unit of disk space allocation in file system
» File block size may be larger than disk block size

• Goal: keep track of which blocks contain the data in this file
» Allow both sequential and random access efficiently
» Use as little space as possible
» Allow files to grow (shrink not necessary, only truncate)

• Allocation decisions require
» How are blocks on disk grouped?
» How can the file system figure out which disk block corresponds

to a particular file block?

• For all these examples, assume file blocks are 1024 bytes

© 1999 by Ethan L. Miller 11-5

Contiguous Allocation

• Data in each file is stored in consecutive blocks on disk
• Simple & efficient indexing

» Starting location (block #) on disk (start)
» Length of the file in blocks (length)

• Random access well-supported
• Difficult to grow files

» Must pre-allocate all needed space
» Wasteful of storage if file isn’t using all of the space

• Logical to physical mapping is easy
blocknum = (pos / 1024) + start;
offset_in_block = pos % 1024;

© 1999 by Ethan L. Miller 11-6

Linked Allocation

• File is a linked list of disk
blocks

» Blocks may be scattered
around the disk drive

» Block contains both pointer to
next block and data

» Files may be as long as
needed

• New blocks are allocated as
needed

» Linked into list of blocks in file

» Removed from list (bitmap) of
free blocks

foo 7 5 3

name start end size

bar 1 12 4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

10

14

12-1

2

5

-1

© 1999 by Ethan L. Miller 11-7

Finding Blocks: Linked Allocation

• Directory structure is simple
» Starting address looked up from directory
» Directory only keeps track of first block (not others)

• No wasted space - all blocks can be used
• Random access is difficult: must always start at first block!
• Logical to physical mapping is done by

block = start;
offset_in_block = pos % 1020;
for (j = 0; j < pos / 1020; j++) {
 block = block->next;
}

» Assumes that “next” pointer is stored at end of block
» May require a long time for seek to random location in file

© 1999 by Ethan L. Miller 11-8

Using a Block Index for Allocation

• Store file block addresses in
an array

» Array itself is stored in a disk
block

» Directory has a pointer to this
disk block

» Non-existent blocks indicated
by -1

• Random access easy
• Limit on file size?

foo 7 3

name index size

bar 1 4

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4
8

11
2

-1

10
3

14
-1
-1

© 1999 by Ethan L. Miller 11-9

Finding Blocks with Indexed Allocation

• Need location of index table: look up in directory
• Random & sequential access both well-supported: look up

block number in index table
• Space utilization is good

» No wasted disk blocks (allocate individually)
» Files can grow and shrink easily
» Overhead of a single disk block per file

• Logical to physical mapping is done by
block = index[block % 1024];
offset_in_block = pos % 1024;

• Limited file size: 256 pointers per index block, 1 KB per file
block -> 256 KB per file limit

© 1999 by Ethan L. Miller 11-10

Larger Files with Indexed Allocation

• How can indexed allocation allow files larger than a single
index block?

• Linked index blocks: similar to linked file blocks, but using
index blocks instead

• Logical to physical mapping is done by
index = start;
blocknum = pos / 1024;
for (j = 0; j < blocknum /255); j++) {
 index = index->next;
}
block = index[blocknum % 255];
offset_in_block = pos % 1024;

• File size is now unlimited
• Random access slow, but only for very large files

© 1999 by Ethan L. Miller 11-11

Two-Level Indexed Allocation

• Allow larger files by creating an index of index blocks
» File size still limited, but much larger
» Limit for 1 KB blocks = 1 KB * 256 * 256 = 226 bytes = 64 MB

• Logical to physical mapping is done by
blocknum = pos / 1024;
index = start[blocknum / 256)];
block = index[blocknum % 256]
offset_in_block = pos % 1024;

» Start is the only pointer kept in the directory

» Overhead is now at least two blocks per file

• This can be extended to more than two levels if larger files
are needed...

© 1999 by Ethan L. Miller 11-12

Unix FFS Allocation Scheme

protection mode

dataowner & group

timestamps

size

block count

single indirect

double indirect

triple indirect

data

data

data

data

...
...

direct blocks

data

data

data

...
data

data

data

...

data

data

data

......

...
...

...

...

inode

© 1999 by Ethan L. Miller 11-13

More on Unix FFS

• First few block pointers kept in directory
» Small files have no extra overhead for index blocks
» Reading & writing small files is very fast!

• Indirect structures only allocated if needed
• For 4 KB file blocks (common in Unix), max file sizes are:

» 48 KB in directory (usually 12 direct blocks)
» 1024 * 4 KB = 4 MB of additional file data for single indirect
» 1024 * 1024 * 4 KB = 4 GB of additional file data for double

indirect
» 1024 * 1024 * 1024 * 4 KB = 4 TB for triple indirect

• Maximum of 5 accesses for any file block on disk
» 1 access to read inode & 1 to read file block
» Maximum of 3 accesses to index blocks
» Usually much fewer (1-2) because inode in memory

© 1999 by Ethan L. Miller 11-14

Block Allocation with Extents

• Reduce space consumed by index pointers
» Often, consecutive blocks in file are sequential on disk
» Store <block,count> instead of just <block> in index
» At each level, keep total count for the index for efficiency

• Lookup procedure is:
» Find correct index block by checking the starting file offset for

each index block
» Find correct <block,count> entry by running through index block,

keeping track of how far into file the entry is
» Find correct block in <block,count> pair

• More efficient if file blocks tend to be consecutive on disk
» Allocating blocks like this allows faster reads & writes
» Lookup is somewhat more complex

© 1999 by Ethan L. Miller 11-15

Managing Free Space: Bit Vector

• Keep a bit vector, with one entry per file block
» Number bits from 0 through n-1, where n is the number of file

blocks on the disk
» If bit[j] == 0, block j is free
» If bit[j] == 1, block j is in use by a file (for data or index)

• If words are 32 bits long, calculate appropriate bit by:
wordnum = block / 32;
bitnum = block % 32;

• Search for free blocks by looking for words with bits unset
(words != 0xffffffff)

• Easy to find consecutive blocks for a single file
• Bit map must be stored on disk, and consumes space

» Assume 4 KB blocks, 8 GB disk => 2M blocks
» 2M bits = 221 bits = 218 bytes = 256KB overhead

© 1999 by Ethan L. Miller 11-16

Managing Free Space: Linked List

• Use a linked list to manage free blocks
» Similar to linked list for file allocation
» No wasted space for bitmap
» No need for random access unless we want to find consecutive

blocks for a single file

• Difficult to know how many blocks are free unless it’s tracked
elsewhere in the file system

• Difficult to group nearby blocks together if they’re freed at
different times

» Less efficient allocation of blocks to files
» Files read & written more because consecutive blocks not

nearby

© 1999 by Ethan L. Miller 11-17

Issues with Free Space Management

• OS must protect data structures used for free space
management

• OS must keep in-memory and on-disk structures consistent
» Update free list when block is removed: change a pointer in the

previous block in the free list
» Update bit map when block is allocated

– Caution: on-disk map must never indicate that a block is free
when it’s part of a file

– Solution: set bit[j] in free map to 1 on disk before using
block[j] in a file and setting bit[j] to 1 in memory

– New problem: OS crash may leave bit[j] == 1 when block
isn’t actually used in a file

– New solution: OS checks the file system when it boots up…

• Managing free space is a big source of slowdown in file
systems

© 1999 by Ethan L. Miller 11-18

Implementing Directories

• Two types of information
» File names
» File metadata (size, timestamps, etc.)

• Basic choices for directory information
» Linear list of files (often itself stored in a file)

– Simple to program
– Slow to run

» Hash table: name hashed and looked up in file
– Decreases search time: no linear searches!
– May be difficult to expand
– Can result in collisions (two files hash to same location)

» Tree structure
– Either of above choices in a tree structure
– Natural choice for graph-based directories (like Unix)

© 1999 by Ethan L. Miller 11-19

Directory Structures in Unix

• Information stored in two places
» File metadata stored in inodes
» File names stored in directories (special kind of file)

• Information in directories
» File name
» Inode number (used to look up metadata to find file data)
» Pointers to subdirectories look the same as files!

• Inodes
» Stored in arrays spread throughout the disk (cylinder groups)
» Indexed linearly by inode number: file system can quickly locate

an inode if its number is known
» Limited to a certain number, determined when the file system is

put onto the disk (make sure there are enough!)

© 1999 by Ethan L. Miller 11-20

File System Performance

• Many factors determine file system performance
» Disk allocation algorithms
» Directory management

– Location of directories
– Type of information stored in directories

• Performance can be improved by
» File system cache: store frequently used information (directory &

file data) in main memory instead of going to disk each time
» Read-ahead: read blocks past current read point without being

explicitly asked, and cache them in memory for later use
» Delayed write: hold written blocks in memory rather than writing

them immediately to disk
– Blocks may change again before being written
– Files may be deleted before they’re actually written
– Caution: more exposure to loss of data from OS crash

© 1999 by Ethan L. Miller 11-21

Improving Unix FS Performance

• Cache commonly used blocks in main memory
» File data blocks
» Inode information for both open and recently open files

• Delay writes to disk by up to 30 seconds
» Many files are deleted before then (e.g., compiler temporaries)
» Other files have several writes within that time

• Read one block ahead of current request
» Block may be read into memory before next request arrives
» Subsequent request may be satisfied immediately
» May increase disk utilization (some reads go unused)

• Allocate file data blocks near the file’s inode
» Reduce seek time (more on that in a bit)
» Reduce time to allocate new blocks (look in smaller area)
» Spread many files over disk by spreading inodes (balance load)

© 1999 by Ethan L. Miller 11-22

When File Systems Go Bad

• File systems can have problems if the OS or disk fails
» Data in memory wasn’t written out in time
» File operation was only partially completed
» Data on the disk was completely wiped out by disk failure

• Programs check for file system consistency
» Make sure every block is either free or in exactly one file
» Make sure directory structure is consistent

• Backup devices (tape, second disk, etc.) hold copies of data
» System utilities back up data on a regular basis

– Backup all files (occasionally)
– Backup modified files (more often)

» Data may be restored from backup if all else fails
» Files restored from backup if they’re accidentally erased

