
1

© 1999 by Ethan L. Miller 4-1

Chapter 4 : Processes

• What is a process?
• How and why are processes scheduled?
• What kinds of operations can be performed on processes?
• How do processes work together?
• What’s the difference between processes and threads?

© 1999 by Ethan L. Miller 4-2

What is a Process?

• A process is a program / job in execution
» Execution proceeds sequentially
» Program may be interactive or batch

• Job == process : the two terms are used interchangeably
• What characterizes a process?

» Program text (the code that’s running)
» Current program counter (instruction that’s currently being

executed)
» Values on the stack
» Values in data section

2

© 1999 by Ethan L. Miller 4-3

Process State

• Process changes state
during execution

» New : created, but not yet
run

» Running: currently using the
CPU

» Waiting: waiting for some
event (external to itself) to
occur

» Ready: waiting to be
assigned to a processor

» Terminated: finished
execution

• Scheduler switches
processes between these
states

NewNew

ReadyReady

RunningRunning

WaitingWaiting

TerminatedTerminated

Start

Scheduler
allocates CPU

Wait for
event

Event done

Exit

Interrupt

© 1999 by Ethan L. Miller 4-4

Process State Information

• CPU must store information about a process when it’s not
running

• Information includes
» Program
» Stack
» Data area
» “Miscellaneous”

• Miscellaneous information includes
» State of the CPU while running the process
» Scheduling information
» Memory usage information
» Accounting information
» I/O status

3

© 1999 by Ethan L. Miller 4-5

Process Control Block (PCB)

• Holds process information not stored elsewhere
» Used to reactivate process
» Used to store process resource usage information

• Process control block includes
» Program counter (when process suspended)
» CPU registers (when process suspended)
» Information for

– CPU scheduling
– Memory management
– Accounting
– I/O status

• PCB is allocated when process created, freed when
process exits

© 1999 by Ethan L. Miller 4-6

Process Scheduling

• CPU scheduler picks a “ready” process to run
» If none available, executes the “idle” program

• Scheduler keeps processes in several queues
» Ready queue: list of processes ready to run (ready state)
» Device queues: for each device, process waiting for activity

from the I/O device

• Processes move between queues
» I/O request moves process from ready to device queue
» Request completion moves process from device to ready

queue

• Movement done by switching pointers in the PCB

4

© 1999 by Ethan L. Miller 4-7

Long-term vs. Short-term Scheduling

• Long-term scheduler: selects process to run next
» Common in batch systems
» Not so common in interactive systems (user decides which

process to run next)
» Runs infrequently (seconds or minutes)
» Controls number of programs running simultaneously (degree

of multiprogramming)

• Short-term scheduler
» Picks which ready process to run next
» Allocates CPU to that process
» Present in interactive & batch systems
» Runs frequently (~10 milliseconds or less)

© 1999 by Ethan L. Miller 4-8

Context Switch

• CPU is running one process, wants to switch to another
process

• Requirements
» Save the current process’s CPU state in its PCB
» Load the new process’s CPU state from its PCB

• Context switch time is overhead : no useful work done by
CPU during this time

» Reduce switch time to as little as possible
» Context switch infrequently to avoid wasting time

• Context switch is hardware-dependent
» Switch code varies greatly by CPU
» Speed of switch depends on how much information has to be

swapped

5

© 1999 by Ethan L. Miller 4-9

Creating a Process

• “Root” process created when the OS is first run
• Processes can create other processes

» Process’s creator is called its parent
» Tree of processes, starting at root
» Issue: what if a process parent exits before it does?

• Resource sharing between processes
» Child can share none, some or all of parent’s resources
» Who chooses the resources to be shared?

– Operating system
– Parent or child

• Address space (type of resource)
» Child gets a duplicate of parent’s
» Child has a new program loaded

© 1999 by Ethan L. Miller 4-10

Process Creation in UNIX

• How is it done?
» Fork system call creates a new process

– Duplicate of original process
» Exec system call replaces process memory space with a

new program
– Usually (but not always) used immediately after fork

• Execution
» Parent can execute at same time as child
» Parent can wait for child to complete
» Parent can exit before child, in which case child becomes

child of root process

6

© 1999 by Ethan L. Miller 4-11

Exiting a Process

• Process executes last statement and exits
» Explicit exit: call to exit()
» Implicit exit: last statement in main() executed

• Parent (or OS) may abort child process
» Process is no longer needed
» Process is using too many resources
» Parent is terminating (OS may allow child to continue)

• Operating system deallocates process resources
» PCB returned to pool of PCBs in OS
» Memory freed up for reuse

© 1999 by Ethan L. Miller 4-12

Two Processes are Better Than One?

• Many problems can be solved better with multiple streams
of execution rather than one

» Solution may be simpler to write
» Task can be sped up

– Run on multiple CPUs
– One process waits for I/O while another runs

» Potentially more robust against process failure (bugs)

• Process must agree to work together
» Individual process is, by default independent of others
» Process explicitly requests to work with another process

7

© 1999 by Ethan L. Miller 4-13

Producer - Consumer Problem

• Standard example of cooperating processes
» One or more producer processes: create information
» One or more consumer processes: consume (use)

information generated by the producer(s)

• Producers place items into a buffer, and consumers pull
items from the buffer

• Issue: how big is the buffer between producers &
consumers?

» Unbounded-buffer: buffer can grow to essentially infinite size
» Bounded-buffer: buffer is a fixed (limited) size
» Different behaviors and implementations for each case

© 1999 by Ethan L. Miller 4-14

Bounded-Buffer: Shared Memory

Variables

const int n;
typedef … Item;
Item buffer[n];
int in, out;

Producer
Item pitm;
while (1) {
 …
 produce an item into pitm
 …
 while ((in+1) % n == out)
 ;
 buffer[in] = pitm;
 in = (in+1) % n;
}

Consumer
Item citm;
while (1) {
 while (in == out)
 ;
 citm = buffer[out];
 out = (out+1) % n;
 …
 consume the item in citm
 …
}

• Correct, but can only fill up n-1 slots

8

© 1999 by Ethan L. Miller 4-15

Threads: Sharing Even More

• What is a thread (lightweight process)?
» Program counter
» Registers
» Stack space

• What must threads share with peer threads?
» Code (text) section
» Data
» Operating system resources (usually)

• How are threads and processes related?
» Multiple threads operating together are called a task
» Traditional (heavyweight) process is a task with exactly one

thread

© 1999 by Ethan L. Miller 4-16

More on Threads

• Threads can be non-blocking
» One thread waits for I/O while another in the same task

continues to run
» Provides higher throughput and improved performance
» Programming can be easier & more efficient

• Threads can be implemented in several places
» Kernel-level threads: kernel schedules threads
» User-level threads

– Implemented as a software library
– Kernel doesn’t know about threading in application

» Both kernel-level and user level: most systems that support
kernel-level threads can also supply user level threads

9

© 1999 by Ethan L. Miller 4-17

Interprocess Communication (IPC)

• Processes must be able to communicate with other
processes

• IPC is a message system that removes the need for
shared variables (visible to the process)

• IPC facility must provide two basic operations:
» Send a message
» Receive a message

• If two processes want to communicate, they must
» Set up a communication link (using IPC facility calls)
» Exchange messages with send and receive

• Communication link may be
» Physical (shared memory, network)
» Logical (OS kernel creates “shared” variables)

© 1999 by Ethan L. Miller 4-18

Issues for Implementation

• How are links established?
» How does one process find another?
» How do processes allow or disallow link formation?

• Can a link include more than one process?
» Are messages broadcast?
» Is a message delivered when all or one receives it?

• What is the capacity & speed of a link?
» Does it provide buffering?

• Are messages fixed or variable size?
» Library can be used to implement variable size messages

(from the process’ point of view) using fixed size IPC

• Can information be sent two ways on a single link?

10

© 1999 by Ethan L. Miller 4-19

Direct Communication

• Processes must explicitly send and receive messages
» Send (P, message): send message to process P
» Receive (Q, message): receive message from process Q

• Link established automatically when needed
• Exactly one link between any pair of processes
• Each link associated with exactly one pair of processes
• Still unresolved:

» How does a process find names of other processes?
» Does the receiver need to know who a message is from?

© 1999 by Ethan L. Miller 4-20

Indirect Communication: Mailboxes

• Messages sent to or from mailboxes (ports)
» Mailbox is equivalent to buffer in producer-consumer
» Each mailbox has a unique identifier
» Processes can communicate through shared mailboxes

• Communication is done by:
» Send (M, message): send message to mailbox M
» Receive (M, message): receive message from mailbox M

• Communication link has these properties:
» Link may be associated with more than 2 processes
» Possibly links between any pair of processes

• Who gets messages sent to mailbox M?
» Arbitrary (OS decides randomly)
» At most one process may receive from mailbox M

11

© 1999 by Ethan L. Miller 4-21

Link Capacity

• Zero capacity
» Sender must wait until receiver gets the message
» Implicit synchronization between two processes

• Bounded capacity
» Sender must wait if more than n messages in the link
» Sender can continue otherwise

• Unbounded capacity
» Sender never has to wait
» Always some limit - there’s not infinite capacity in the

computer...

© 1999 by Ethan L. Miller 4-22

IPC Errors

• Process termination: either sender or receiver terminates
before message is delivered

» Delete message
» Allow message to be delivered

• Message lost
» OS resends message until it arrives
» Process resends message until it arrives
» OS notifies process of lost message

• Message scrambled
» Use checksums to detect error
» Resend (or drop) scrambled messages

12

© 1999 by Ethan L. Miller 4-23

Example: UNIX

• UNIX supports send & receive and mailboxes (ports)
• Same method for local and remote communication

» OS handles network issues if necessary

• Finding a process:
» Unique port name (number) advertised publicly
» Process wanting to establish communication uses that port
» At most one process listens to a particular port

• Communicating
» Public port used to decide on private link (new port number)
» Send & receive done on the private link

• Cleaning up
» Port is released after communication is done
» Other processes may reuse the port

© 1999 by Ethan L. Miller 4-24

Example: UNIX

• UNIX allows processes to share regions of memory
» Syntax varies depending on the kind of Unix
» Memory need not have the same address in all processes

• Memory may be shared between more than two processes
» Each process must explicitly ask to share the memory
» Memory sharing controlled: not just any process can do it

• Processes must manage synchronization themselves
(more on that in a bit…)

» Operations on shared memory have to be ordered correctly
» Some primitives to coordinate between processes

