
1

© 1999 by Ethan L. Miller 3-1

Operating System Structures

• Parts of an operating system
• Services that an operating system provides
• Calls to the operating system
• Operating system programs
• Operating system structure

» Layering
» Levels of abstraction

• Virtual machines
» General VMs
» DLX virtual machine

• System design and implementation

© 1999 by Ethan L. Miller 3-2

Operating System Components

• Process management
• Memory management

» Main memory
» Secondary storage (disk) management

• I/O system management
• File management
• Protection

» Users from one another
» Operating system from everyone

• Networking
• Command interpreter (user interface)



2

© 1999 by Ethan L. Miller 3-3

Managing Processes

• What is a process?
» Program in execution
» More generally, a single stream of instructions

• What does a process need?
» CPU time
» Memory, files & disk space
» I/O devices

• What is the operating system responsible for?
» Creating and deleting processes
» Starting and stopping processes
» Providing mechanisms to allow

– Processes to synchronize with one another
– Processes to communicate with one another

© 1999 by Ethan L. Miller 3-4

Managing Main Memory

• What is main memory?
» Large array of bytes (or words)
» Volatile storage: loses contents if the system crashes or fails

• What is the OS responsible for?
» Allocating pieces of memory to the processes that want to

use it
» Keeping track of who is using which part of memory
» Deciding which processes to run based on available memory



3

© 1999 by Ethan L. Miller 3-5

Disk Management

• What is disk?
» Larger storage than main memory
» Non-volatile: contents survive system failures and crashes

(though disk crashes can lose data…)
» Repository for most programs and data (accessed through

file system)
» Other types of storage possible, but not common for active

use (flash memory, tape)

• What’s the OS responsible for?
» Allocating storage to those who request it
» Managing the available free space
» Scheduling the operation of the disk

© 1999 by Ethan L. Miller 3-6

I/O System Management

• What is the I/O (input/output) system?
» Other devices such as video, tape drives, mouse & keyboard
» Typically not used as active storage

• What’s the OS responsibility
» Maintaining buffers for devices to use for transfers
» Providing a standard interface to different kinds of devices via

device drivers
» Providing drivers for many kinds of hardware devices



4

© 1999 by Ethan L. Miller 3-7

File Management

• What’s a file?
» Information grouped together by its creator
» Examples

– Program
– Documents (spreadsheet, paper, etc.)
– Data

• What’s the OS responsible for?
» Creating and deleting files
» Allowing users to find files they’ve previously stored

– Creating and deleting directories
– Looking up files

» Getting file contents to and from memory
» Backing up files for safety reasons

© 1999 by Ethan L. Miller 3-8

Protection

• What is protection?
» Controlling accesses to resources by

– Users
– Processes

» Maintaining integrity of resources

• What is OS responsibility?
» Distinguish between allowed and unauthorized usage

– Allow different types to be specified
– Keep track of who’s allowed to change the rules

» Enforce protection rules
– Prevent unauthorized accesses
– Possibly prevent users from finding out what they can’t

access...



5

© 1999 by Ethan L. Miller 3-9

Network Management

• What’s a network?
» Communication system tying computers together
» Mechanism for allowing multiple computers to act together

(distributed system)

• What’s the OS responsibility?
» Decide who’s allowed to use the network
» Figure out who gets messages, and how to deliver them
» Take CMSC 481 to find out more...

© 1999 by Ethan L. Miller 3-10

Command Interpreter / User Interface

• What is it?
» Method for users to ask the computer to do something
» Mechanism for processes (programs) to make requests

• What are the OS responsibilities?
» Interpret control statements that request previously

mentioned functions
– Process & resource management
– Protection
– File system & I/O device access

» Provide an easy-to-use (hopefully) interface to the OS
– Command line interpreter (shell)
– Graphical user interface (GUI)



6

© 1999 by Ethan L. Miller 3-11

OS-Provided Services

• Execute a program
» Load into memory
» Run it

• Perform I/O operations on behalf of users & processes
• File system operations (read/write/create/delete, etc.)
• Communications

» Between processes on the same computer
» Between a process on this computer and one on another
» Uses either shared memory or message passing

• Detect errors
» Report (and perhaps work around) errors in CPU, I/O

devices, and memory
» Contain errors in user processes (and OS!)

© 1999 by Ethan L. Miller 3-12

Internal OS “Services”

• Additional services not directly requested by users
» Necessary to allow OS to function properly
» Often largely invisible to users

• Resource allocation
» Divide available resources between processes
» Ensure that resources aren’t overallocated

• Accounting
» Track resource usage by users & processes

– Billing
– Gather usage statistics

• Protection
» Control access to system resources
» Prevent unauthorized resource usage



7

© 1999 by Ethan L. Miller 3-13

System Calls

• Provide an interface between a process and the OS
» Implemented as assembly language instructions
» Usually “hidden” in a standard library of code
» Most languages (C, Fortran, Pascal, etc.) allow system calls

to be made directly

• Allow programs to pass information to the OS
» Pass by value

– Put parameters in CPU registers
– Push parameters onto the stack

» Store parameters in memory (table or otherwise), and pass
pointers to the parameters (pass by reference)

» Operating system knows where to find information, and reads
it after the system call gives it control

» Information is returned on stack or in register

© 1999 by Ethan L. Miller 3-14

OS Programs

• Not part of the operating system kernel (central part of OS)
• Provide services that can be done by user-level processes

» File & directory manipulation (cat, ls)
» Operating system status information (ps, top)
» Programming language support (gcc, f77, perl)
» Program loading and execution (ld)
» Communications (ssh, ping)
» Protection manipulation (chmod, chgrp)
» Interface (X, tcsh)

• Users normally interact with programs, not system calls
» Friendlier interface
» More error checking: protect users from themselves



8

© 1999 by Ethan L. Miller 3-15

Operating System Structure

• “Jumble” approach
» Little structure
» Smallest code size

• Modular approach
» Code grouped into modules
» All modules run at the same “level” and can access the same

things

• Layered approaches
» Modules either layered or at same level
» Modules can only access the structures they need

© 1999 by Ethan L. Miller 3-16

OS Structure : “Jumble” Approach

• Simple approach
» Most functionality in least space
» Difficult to add more functionality later
» Bugs in one module can crash the whole system

• Example : MS-DOS
» Not divided into modules
» Interfaces and levels of functionality not well-separated
» Difficult to add new functionality

– Changes made all over the system
– Bugs in additions could crash the entire system

» Advantage: small memory footprint



9

© 1999 by Ethan L. Miller 3-17

OS Structure : Modular Approach

• Still relatively simple
» No need for advanced hardware
» Relatively fast (low overhead)

• Example : BSD 4.x UNIX
» Two basic levels of structure

– Systems programs
– Operating system kernel

» Kernel further broken down into modules
– Individual modules perform specific functions
– Device drivers easily added (well-defined interface)

» All modules can access all data structures
– Interaction between modules may be easier to program
– Bugs in one module may affect other modules

© 1999 by Ethan L. Miller 3-18

OS Structure: Layered Approach

• Break operating system into modules
• Allow each module to access only those structures it needs

to perform its job
» Fewer bugs due to unusual interactions: more stability?
» Better overall protection
» May be a bit slower

• Example: Mach (microkernel)
» Each module (memory management, process management,

etc.) can only access its own structures
» Communications between modules via simple interface
» Bug in one module may not crash entire machine
» Flaky device drivers can be dealt with
» Potentially easier to add code to operating system



10

© 1999 by Ethan L. Miller 3-19

OS Structure: Layered Approach

• OS divided into layers, each one using functions only of
lower layers

• Example: THE operating system
» Layer 5: user programs
» Layer 4: I/O device buffering
» Layer 3: operator/console device driver
» Layer 2: memory management
» Layer 1: CPU scheduling
» Layer 0: hardware

© 1999 by Ethan L. Miller 3-20

Virtual Machines

• Provide an interface to the user identical to the underlying
bare hardware

» Each process has access to all hardware features
– Its own CPU & memory
– Its own I/O devices

» Virtual machine interprets requests that might be “dangerous”
and changes them to keep processes separate

» CPU scheduling gives a process the illusion of its own CPU
» Virtual I/O devices created by interleaving accesses from

processes

• Programs can be written that use the raw hardware
• Virtual machine need not be the same as the actual

machine on which it’s running



11

© 1999 by Ethan L. Miller 3-21

Why Use a Virtual Machine?

• Protect system resources
» Each VM is isolated from all other VMs
» Individual VM can run simple (or no) operating system
» However, no direct sharing of resources?

• Provide a platform for OS (and architecture) research &
development

» Use “raw” hardware to develop new operating systems
without crashing current system

» Simulate architecture changes without actually building them

• Unfortunately, VMs are difficult to implement because they
must provide an exact duplicate of the underlying machine

© 1999 by Ethan L. Miller 3-22

Goals for OS Design

• Goals for the user experience: OS should be:
» Reliable
» Easy to use

– Graphical interface?
– Simple-to-understand commands

» Fast
» Safe

• Goals for the OS designer: OS should be:
» Well-designed

– Easier to implement & maintain
– Error-free design (reliable, few bugs)

» Flexible: able to add new pieces without a total redesign
» Efficient: use the hardware well without wasting resources



12

© 1999 by Ethan L. Miller 3-23

Distinguishing Mechanism from Policy

• OS designers must separate mechanism from policy
• Mechanisms

» Tell the system how to accomplish something
» May be changed without changing policies

– New mechanisms may be more efficient
– New hardware may require new mechanisms

• Policies
» Tell the system what to do
» Changes in policy need not result in new mechanisms

– Existing mechanisms used in different ways
– Single operating systems can support multiple policies

© 1999 by Ethan L. Miller 3-24

How are Systems Implemented?

• Assembly language
» May be faster
» Allows access to specific features of hardware

• High-level languages
» Code is easier and quicker to write
» Code is more compact
» Code is easier to understand, and thus debug
» Code can be ported (moved to other hardware) by simply

recompiling

• Some assembly language is necessary for an OS
» Low-level details of manipulating hardware
» Context switches
» Goal: minimize assembly language code



13

© 1999 by Ethan L. Miller 3-25

Porting Operating Systems

• Operating systems can run on multiple platforms
• To allow this, use modular code and change only what’s

necessary
» Code to do context switch and other low-level hardware

operations
» Device drivers for particular kinds of devices

• Recompile everything else for the new system
» Compiler can produce code optimized for a particular model

of CPU
» Compiler can produce code that will run on a wide range of

models

• Trade off efficiency and ease of porting

© 1999 by Ethan L. Miller 3-26

Creating an OS for a New Machine

• Sometimes necessary to create an OS from scratch
» Brand-new architecture (PowerPC, Intel Merced)
» Brand-new OS design (BeOS)

• Make it easier by:
» Creating development tools that run on existing OS
» Recycling code for existing OS
» Running on a virtual machine with debugging tools available

– OS runs slower
– Development can begin before hardware is available


