
© 1999 by Ethan L. Miller 16-1

Distributed Operating Systems

• How are computer systems related?
» Network operating systems
» Distributed operating systems

• How does timing work?
• Accessing remote services
• Surviving failures

» Machines that break
» Network connections that fail

• Design issues for distributed systems



© 1999 by Ethan L. Miller 16-2

Network Operating Systems

• Computers have “individual” operating systems
» Systems cooperate but are distinct
» Systems know about other computers

» Users can tell which machine they’re using

• Information & users have to switch machines explicitly
» Users use rlogin or ssh to connect to other machines

» Files transferred via ftp

• Systems share some information
» User names & access matrix

» Network information



© 1999 by Ethan L. Miller 16-3

Distributed Operating Systems

• Many computers act together
» Users can’t tell which computer they’re using
» Computers cooperate to make environment identical on every

system

• Two kinds of transparency
» Data migration: data moves to where the user is running

– Move entire file (or more) or

– Move only the data needed immediately by the user
» Computation migration: processes migrate to machines on

which data is stored

– May be more efficient than moving data around

– Harder to coordinate, and may result in poor load balancing



© 1999 by Ethan L. Miller 16-4

Process Migration

• Processes can be moved from one processor to another
» Suspend process on original machine or direct request to new

machine
» Copy entire process address space to a new machine

» Restart it in new home

• Reasons for migrating a process are:
» Load balancing: try to even the load among processors

» Computation speedup: use faster processors for compute-
intensive tasks

» Hardware or software preferences: run processes on a computer
with the necessary hardware or software

» Data access: data used by the process is elsewhere, and it’s
faster to move the process than the data

• Process migration is usually transparent to the user



© 1999 by Ethan L. Miller 16-5

Parallel (Multiprocessor) OS

• Multiprocessors have several CPUs in a single box
» Processors share memory, I/O devices
» Single copy of the OS in memory
» Example: umbc8.umbc.edu

• Similar to distributed operating system in many ways
» Scheduler may run processes on any available CPU

» Process migration is much cheaper: no data needs to be moved
» All processors share devices easily, but more synchronization is

necessary (possible conflicts)

» Deadlock may be more likely: several things can happen at once



© 1999 by Ethan L. Miller 16-6

Real Distributed Systems

• Most systems have features of both distributed & network
systems

• Example: Unix
» Users can tell which machine they’re logged into

» User information is shared among all machines

» Processes aren’t automatically migrated
» Logins can be load-balanced (as with gl.umbc.edu)

» Data access can be made transparent - all file systems available
in the same way from all machines (distributed file system)

• Example: Windows NT
» Users know which machine they’re using

» Files are shared among systems

» Processes don’t move from one system to another, but can be
sent to another CPU on the same system



© 1999 by Ethan L. Miller 16-7

Accessing Remote Services

• Processes on one system want to access services on another
computer

» Use files stored on another computer
» Send print requests to a printer on another computer

• Remote services can be accessed by
» Exchanging messages using an Internet protocol

– Fetching files via FTP

– Getting Web pages via HTTP
» Using the remote procedure call (RPC) paradigm

– Local process makes what looks like a procedure call

– OS sends the information to a remote machine (if necessary)
and waits for a reply

– OS gets the reply and returns the answer to the local
process



© 1999 by Ethan L. Miller 16-8

Remote Procedure Calls

• Operating system determines whether the service is available
locally

» If so, procedure is done locally
» If not, OS packages up parameters and sends them to a known

port (port == mailbox) on a remote machine

– Message includes “return address” so remote machine can
send the reply back

– Message includes both explicit parameters (from the
procedure call) and implicit parameters (user name,
authentication info, etc.)

• Remote server receives message and processes it
» Server performs same security checks as for a local procedure

call
» Issue: how can server trust that incoming messages come from

another (presumably trusted) OS?



© 1999 by Ethan L. Miller 16-9

RPC in Distributed File Systems

• Distributed file systems such as NFS use RPCs extensively
» Process makes a local procedure call such as read or write

» Operating system decides whether request can be handled
locally or or must be sent to a remote server

• If file is remote, OS does the following (for a read):
» Send the relevant information in a message to the server

– File ID, offset, read size

– User name & authentication info
» Wait for a reply with the file data

» When the reply arrives, return the data to the user process



© 1999 by Ethan L. Miller 16-10

Handling RPCs on the Server

• Start a new process for each RPC message received
» Slow: new process for each remote request
» Simple to program

• Start a new thread in an existing task for each RPC message
» Faster: no need to create a new address space each time

» Threads for a given type of RPC can share memory & resources

» Can be less stable & secure: error in one thread can affect
others

• Pick a thread from a pool of available threads for this RPC
» Even faster than starting a new thread

» Wasted resources: idle threads

» Threads may not be available during times of heavy load

» Same security & stability issues as other thread methods



© 1999 by Ethan L. Miller 16-11

When Distributed Systems Fail

• Distributed systems can be more vulnerable to failure than
individual computers

» More components that can fail
» Increased complexity leads to higher likelihood of failure

• Failures come in two types
» Link between two computers fails (computers are fine)

» Computer in the distributed system fails (hardware or software)

• When failure occurs
» Reconfigure the system to allow work to continue

» Recover from failure when a failed component returns to service



© 1999 by Ethan L. Miller 16-12

Detecting Failures

• Exchange “are you alive” messages at fixed intervals
» If site A doesn’t get a message within the specified interval, it

assumes that either
– The message was lost (retry it)

– Site B is down

– The link between A and B is down

» If site B doesn’t get a reply to the message it sent to A, it
assumes

– Situation similar to the first situation
– Alternate paths may also be down

• Detect failures in other ways
» Regular messages (RPC, etc.) go unanswered

» Components report that they’ve failed



© 1999 by Ethan L. Miller 16-13

Reconfiguration

• Rearrange the components of the system so work can
continue without the failed component

» Failed link can be avoided by rerouting messages
» Failed link can divide the system

– Each half of the system operates normally

– Operations that can only be done in the other half aren’t
done (fail immediately)

» Failed computer can be avoided: run processes elsewhere

• Notify all computers in the distributed system of the failure
» Avoid delays waiting for resources that are known to have failed

» Send new requests somewhere that can handle them

» Update OS so it can make more intelligent decisions (revise
scheduler, use alternate versions of files, etc.)



© 1999 by Ethan L. Miller 16-14

Recovery

• When a failed component is fixed, the system has to find out
about it

» Active components (CPUs, etc.) can send out messages to the
rest of the system

» Passive components (links, etc.) are discovered by

– Probing the component to see when it’s fixed

– Having a human notify the system that it’s fixed

• Recovery procedure
» Notify the rest of the system that the component is available
» Allow other components to use the fixed component again

» Complete any jobs that may have been waiting for the
component to be fixed



© 1999 by Ethan L. Miller 16-15

Designing Distributed Systems

• Provide transparency to users
» Distributed system should look and feel to users no different

than a single centralized computer
» Local & remote resources should work in the same ways

» Workload should be distributed evenly to all relevant resources

• User mobility
» Users should be able to log in anywhere and have it look the

same

» Users’ data should migrate to where they’re logged in to improve
performance

• Fault tolerance
» System should survive failures of any component

» Performance may degrade if components fail

» Users should be unaware of any failures (except for slower
performance)



© 1999 by Ethan L. Miller 16-16

Designing Distributed Systems, continued

• Scalability
» Distributed systems should perform better when more

components are added
» Distributed systems shouldn’t have any central bottlenecks

(single computer that does X for all users)

» A single component’s demand must be bounded, regardless of
the number of nodes in the system

– Possibly done by replicating the component and allowing
requests to be spread out

• Grace under pressure
» System must handle high loads efficiently

– Reject new requests & retry them later

– Handle new requests, albeit slowly

» System must not deadlock (can be difficult in large distributed
systems…)


