
© 1999 by Ethan L. Miller 13-1

Secondary Storage Structures

• Disk structure
• Scheduling disk requests

» Scheduling algorithms
» Balancing performance and response time

• Managing disk information
» Disk formatting
» Booting from disk

• Managing swap space for virtual memory
• Dealing with disk reliability

» Disk failures & dealing with them
» Atomic updates to structures on disk



© 1999 by Ethan L. Miller 13-2

Overall Disk Structure

• In the olden days
» Disks were organized into cylinders, tracks, and sectors
» Operating systems had to know disk geometry!

• In modern disks
» Disks are broken into sequentially numbered logical blocks
» Logical blocks with nearby numbers are nearby on disk
» Logical block numbers are assigned by:

– Putting sector 0 on the first sector of the first track in the
outermost cylinder

– Numbering continues
• Rest of track
• Rest of cylinder
• Rest of the cylinders on the disk, moving inward

» File systems refer to blocks by logical address



© 1999 by Ethan L. Miller 13-3

Scheduling Disk Requests

• Goal: use disk hardware efficiently
» Bandwidth as high as possible
» Disk transferring as often as possible

• We want to
» Minimize disk seek time (moving from track to track)
» Minimize rotational latency (waiting for disk to rotate the desired

sector under the read/write head)

• Calculate disk bandwidth by
» Total bytes transferred / time to service request
» Seek time & rotational latency are overhead (no data is

transferred), and reduce disk bandwidth

• Minimize seek time & rotational latency by
» Using algorithms to find a good sequence for servicing requests
» Placing blocks of a given file “near” each other



© 1999 by Ethan L. Miller 13-4

Disk Scheduling Algorithms

• Schedule disk requests to minimize disk seek time
» Seek time increases as distance increases (though not linearly)
» Minimize seek distance -> minimize seek time

• Disk seek algorithm examples assume a request queue & head
position (disk has 200 cylinders)

» Queue = 100, 175, 51, 133, 8, 140, 73, 77

» Head position = 63

100 17551 1338

140

73

77

read/write head position



© 1999 by Ethan L. Miller 13-5

First-Come-First Served (FCFS)

• Requests serviced in the order in which they arrived
» Easy to implement!
» May involve lots of unnecessary seek distance

• Seek order = 100, 175, 51, 133, 8, 140, 73, 77
• Seek distance = (100-63) + (175-100) + (175-51) + (133-51) +

(133-8) + (140-8) + (140-73) + (77-73) = 646 cylinders

100
175

51
133

8
140

73
77

read/write head start



© 1999 by Ethan L. Miller 13-6

Shortest Seek Time First (SSTF)

• Service the request with the shortest seek time from the current
head position

» Form of SJF scheduling
» May starve some requests

• Seek order = 73, 77, 51, 8, 100, 133, 140, 175
• Seek distance = 10 + 4 + 26 + 43 + 92 + 33 + 7 + 35 = 250 cylinders

100

175

51

133

8

140

73
77

read/write head start



© 1999 by Ethan L. Miller 13-7

SCAN

• Disk arm starts at one end of the disk and moves towards the other
end, servicing requests as it goes

» Reverses direction when it gets to end of the disk
» Also known as elevator algorithm

• Seek order = 51, 8, 0 , 73, 77, 100, 133, 140, 175
• Seek distance = 12 + 43 + 8 + 73 + 4 + 23 + 33 + 7 + 35 = 238 cyls

100

175

51

133

8

140

73
77

read/write head start



© 1999 by Ethan L. Miller 13-8

C-SCAN

• Identical to SCAN, except head returns to cylinder 0 when it reaches
the end of the disk

» Treats cylinder list as a circular list that wraps around the disk
» Waiting time is more uniform for cylinders near the edge of the disk

• Seek order = 73, 77, 100, 133, 140, 175, 199, 0, 8, 51
• Distance = 10 + 4 + 23 + 33 + 7 + 35 + 24 + 199 + 8 + 43 = 386 cyls

100

175

51

133

8

140

73
77

read/write head start



© 1999 by Ethan L. Miller 13-9

C-LOOK

• Identical to C-SCAN, except head only travels as far as the last
request in each direction

» Saves seek time from last sector to end of disk

• Seek order = 73, 77, 100, 133, 140, 175, 8, 51
• Distance = 10 + 4 + 23 + 33 + 7 + 35 + 167 + 43 = 322 cylinders

100

175

51

133

8

140

73
77

read/write head start



© 1999 by Ethan L. Miller 13-10

How to Pick a Disk Scheduling Algorithm

• SSTF is easy to implement and works OK if there aren’t too
many disk requests in the queue

• SCAN-type algorithms perform better for systems under
heavy load

» More fair than SSTF
» Use LOOK rather than SCAN algorithms to save time

• Long seeks aren’t too expensive, so choose C-LOOK over
LOOK to make response time more even

• Disk request scheduling interacts with algorithms for
allocating blocks to files

• Make scheduling algorithm modular: allow it to be changed
without changing the file system

• Typically, use SSTF for lightly loaded systems and C-LOOK
for heavily loaded systems



© 1999 by Ethan L. Miller 13-11

Low-Level Disk Management

• Formatting a disk
» Physical formatting: dividing a disk into sectors so the controller

can read them
» Logical formatting: placing the initial versions of the file system

structures on the disk (usually done by a specialized program)

• Structures created by physical formatting
» Spare blocks to replace other blocks that go “bad”
» Identification info (used by controller) for individual sectors

• Structures created by logical formatting
» Directory area
» Free block information (all blocks free initially)
» File system information area (read to initialize FS on boot)
» Boot block
» Bootstrap loader



© 1999 by Ethan L. Miller 13-12

Booting a Computer From Disk

• ROM contains simple code to read first n blocks from the disk
» Code split between ROM & disk varies by computer/OS
» Booting from network disk done in the same way

• First blocks of disk contain a program that knows how to read
the operating system kernel off the disk

» Must know basic info about file system
» Need not be able to do everything (no need to write data, create

files, cache data, etc.)

• Operating system starts execution
» Initializes file system by reading file system info block off disk
» Checks and fixes file system (if necessary) before making it

available



© 1999 by Ethan L. Miller 13-13

Managing Swap Space (VM on Disk)

• Virtual memory uses disk to store overflow from main memory
» Space consumed is called swap space
» Swap space can be stored in

– Special disk partition dedicated to swap space
– Special file in the normal file system

» Maximum allowable swap space set as OS parameter

• Swap space management is done by:
» Allocating swap space when process starts

– Text segment (program code): some OS simply point to the
executable in the file system instead

– Data segment (program data)
» Keeping track of swap space used by a process in swap maps
» Writing pages to disk when forced out of physical memory: some

OS only allocate space at this point, not when page is created



© 1999 by Ethan L. Miller 13-14

Disk Reliability Issues

• Disk failure rates are relatively low
» MTBF (Mean Time Between Failures) is 250,000+ hours

– Disks don’t actually last 30 years!
– On average, failure rate per year is 1 in 30

» Low failure rates + lots of disks = trouble!

• Disk striping places file system across multiple disks, resulting
in higher bandwidth (more disks) and lower reliability

• Solution: use redundancy (RAID = Redundant Array of
Inexpensive Disks)

» Mirroring: write two copies of each block, one to each disk
» Block interleaved parity: keep a checksum of corresponding

sectors on a separate disk
– Requires less overhead for protection
– Can be slower to write



© 1999 by Ethan L. Miller 13-15

Dealing With OS Failures

• Problem: how can file system improve performance while
guarding against OS crashes?

• Solution: write-ahead log (circular list on disk)
» File system writes a list of what it’s about to do in the log
» Operations in the log are of the form “allocate block 8431 and

map it to block 18 of file 1533”
» File system performs the operations in any order
» File system optionally writes “operation complete” to the log

• On crash recovery
» Read the last few log entries to see what should have been

done before the crash
» For each operation in the log

– If the operation in the log wasn’t done, do it
– If the operation was already done, do nothing


