
© 1999 by Ethan L. Miller 12-1

I/O Systems

• What kinds of I/O devices are used by the operating
system?
» How are they used to manipulate data?
» What kinds of operations can they do?

• How do applications make I/O requests?
• How does the kernel service I/O requests?

» How are user requests translated into OS requests?
» How does the kernel control I/O hardware?

• What are the performance issues?

© 1999 by Ethan L. Miller 12-2

Types of I/O Hardware

• Storage devices
» Hold data for short- or long-term
» Can be viewed as memory
» Examples

– Disk
– Tape

• Input devices
» Keyboard
» Mouse

• Output devices
» Video display
» Sound system

• Both input & output: network

© 1999 by Ethan L. Miller 12-3

Storage Device Hierarchy

• Main memory
» Low latency

» High bandwidth
» Volatile

• Magnetic disk
» Medium latency

» Medium bandwidth
» Non-volatile

• Magnetic tape
» Long latency

» Medium bandwidth
» Non-volatile

• CD-ROM

Registers

Cache

Main memory

Solid-state disk

Magnetic disk

Optical diskMagnetic tape

V
ol

at
ile

N
on

-v
ol

at
ile

Faster
Smaller

© 1999 by Ethan L. Miller 12-4

Data Movement in the Storage Hierarchy

• Data moves up the hierarchy
» Demand from a higher level
» Copy kept on both higher and lower levels (caching)

• Data moves down the hierarchy
» Lack of space in the higher level
» Volatility in the higher level

– Move the data for permanent storage
– Back up the data to guard against accidental loss

• Consistency & coherency
» Data on all levels should be the same
» Temporary differences may occur because of caching
» Differences must be kept tracked

© 1999 by Ethan L. Miller 12-5

Magnetic Disk (Hard Drive) Operation

sector

cylinder

• Data storage
• Concentric circles (tracks)
• Both sides of the platters

• Corresponding tracks on
different surfaces make up a
cylinder

• Minimum transfer unit is a
sector

• All heads move (seek) together
(fixed to actuator)

• To read or write data, disk
• Seeks to correct track
• Rotates to correct sector
• Reads or write data as it

passes under the appropriate
head

platter

spindle

track

head

actuator

© 1999 by Ethan L. Miller 12-6

Other Types of Disks

• Removable magnetic disk cartridges
» Regular 1.4 MB floppies & Zip disks
» Removable hard drives
» Range from slow to fast
» Very inexpensive

• CD-ROM / CD-R / DVD
» Write-once (or not at all)
» No risk of accidental erasure
» Read & written optically

• Magneto-optical
» Read & written magnetically with optical assistance
» Faster than optical (slightly)
» Less common today

© 1999 by Ethan L. Miller 12-7

Input & Output Devices

Keyboard
Mouse
Modem

Network
Video

Network
Scanner

Printer
Modem
Sound

Input

Output

Slow
(low bandwidth)

Fast
(high bandwidth)

© 1999 by Ethan L. Miller 12-8

Connecting I/O Devices Together

• Many different I/O devices: use
standard interface (bus)

» System bus (PCI)
» I/O bus (SCSI, IDE/ATA, USB,

FireWire)

• Buses may be connected
together by controller / adapter

» PCI card that speaks SCSI

• Bus has well-defined protocol
controlled by

» Hardware (load / store or I/O
commands)

» Software “commands”

• I/O port provides way for system
to communicate with device

SCSI
controller

CPU

cache

memory

video
card

USB
keyboard

mouse

PCI
bus

SCSI
bus

© 1999 by Ethan L. Miller 12-9

Controlling an I/O Device

• Range of memory addresses assigned to each I/O device
(memory mapping)
» Devices listen on bus for particular addresses
» Device control registers mapped to addresses
» Each device listens to a different range

• Simple register interface
» Status register (current condition of device)
» Control register (send instructions & control info to device)
» Data-in register (get data from the device)
» Data-out register (send data to the device)

• Host uses registers to communicate with the device
» Control the sending & receiving of data
» Discover device’s status

© 1999 by Ethan L. Miller 12-10

Polling vs. Interrupts

• Polling repeatedly asks
device for status

» Waits until device is ready
» Analogous to spin-lock

• Simple to implement
» Easy to program
» Cheap in hardware

• Inefficient
» Uses up CPU time

» Uses bus bandwidth

• Interrupt notifies CPU of any
change in device status

» CPU can do other things in
the meantime

» Analogous to sleep/wakeup

• Interrupt causes execution of
“interrupt handler”

» Figures out which device
caused interrupt

– Vector
– Polling

» Notifies waiting process

• Interrupt handler often
handles exceptions as well

© 1999 by Ethan L. Miller 12-11

Interrupt-Driven I/O Cycle in OS

CPU gets interrupt
transfers control to interrupt handler

Interrupt handler processes data
Returns from interrupt

CPU makes process runnable again

CPU resumes with interrupted task

Device driver initiates I/O

I/O device finishes:
Request complete or

error occurred

I/O device starts request

CPU I/O device & controller

2

3

4

5

6

1

7

CPU continues to execute instructions for other tasks

© 1999 by Ethan L. Miller 12-12

Direct Memory Access (DMA)

• Problem: many devices must transfer lots of data
» Polling (programmed I/O) sucks up CPU cycles
» Interrupts for each data word is worse!

• Solution: Direct Memory Access (DMA)
» CPU tells I/O device (controller) where to put data
» DMA Controller manages transfer, bypassing CPU
» Controller interrupts CPU when it’s done

• DMA removes load from the CPU
» Steals memory cycles from the CPU: only one thing (CPU or

DMA) can access memory in a given bus cycle

• DMA complicates OS programming
» Keep track of multiple outstanding requests
» Match completed requests with waiting processes

© 1999 by Ethan L. Miller 12-13

Steps in a DMA Request

• Application makes request to read C bytes from location L
on disk to address X in memory

• Device driver tells disk controller to transfer C bytes from
location L on disk to memory at address X

• Disk controller tells disk to seek to correct location
• Disk controller initiates DMA transfer and sends each word

from disk to the DMA controller
• DMA controller transfers each word from to memory,

keeping track of current address and count remaining
• When the count reaches zero, the DMA controller signals

the CPU by causing an interrupt

• Device driver marks the request as complete and notifies
application

© 1999 by Ethan L. Miller 12-14

I/O Interface for Applications

• Standard I/O system calls for common operations
» Read & write
» Open & close

• Device drivers hide differences among controllers and
devices from the kernel

• Devices have many different characteristics
» Character vs. block-oriented
» Sequential vs. random-access
» Synchronous vs. asynchronous
» Sharable vs. dedicated (single-user)
» Slow vs. fast
» Read-only vs. write-only vs. read-write

© 1999 by Ethan L. Miller 12-15

Device Drivers

• Provide a standard interface to the kernel
» Read / write data to / from a buffer
» Provide ready / not-ready status
» Suspend process until I/O complete

• Manage the details of the particular device
» Keep device status
» Execute the specific instructions necessary to run the device
» Keep queues of buffers, requests, and processes

• Keep track of multiple devices of the same type

• Allow for easy addition of new devices
» Write new driver to standard interface
» Use devices interchangeably - interfaces are the same

© 1999 by Ethan L. Miller 12-16

Block and Character Devices

• Block devices
» Transfer data in big chunks
» Are typically memory-type devices
» Support read, write, and (usually) seek commands
» May support memory-mapped I/O: accesses look like

memory reads & writes rather than like I/O
» Include disks, tapes, video displays

• Character devices
» Transfer data one (or a few) characters at a time
» Are usually relatively slow devices
» Support read (get) and write (put)
» Include keyboards, mice, serial ports, parallel ports

© 1999 by Ethan L. Miller 12-17

Networks: Neither Block nor Character

• Share some characteristics of both block and character
devices
» Relatively high-speed
» Impossible to seek backwards (or anywhere else)

• Include a large amount of pre-processing
» Network protocol stack
» Separate processing for network I/O itself

• Not covered in CMSC 421 - take CMSC 481 instead...

© 1999 by Ethan L. Miller 12-18

I/O Devices Without Data?

• Timers
» Interrupt CPU after a particular interval has elapsed
» Keep track of total time since the timer was reset

• Clocks
» Provide real time and/or date
» Can be simulated with timer interrupts and software control

– Timer interrupts 10 times per second
– OS counts the number of timer interrupts

• Event counters
» Count CPU-specific events
» Useful for debugging & testing

© 1999 by Ethan L. Miller 12-19

Other I/O Operations

• Standard operations provided by OS
» Read & write
» Open & close
» Seek

• What about miscellaneous operations?
» All devices: status
» Tape: fast-forward & tape eject
» Printer: eject page
» Video display: set color tables, scan rate, etc.

• Solution: catch-all I/O command
» Specifics depend on the particular device & driver
» Allows the addition of new operations without changing the

interface to the OS kernel

© 1999 by Ethan L. Miller 12-20

Error Handling for I/O Operations

• OS can usually recover from I/O errors
» Device error is simply reported to application
» Type of error is also available

– Transient error (out of paper, device busy, ...)
– Hard error (retrying won’t help)
– Device unavailable or unknown

• Return error information to application
• Log the error in the system log for review by system

administrator
» Identify failing devices
» Notify operator of needed changes (i.e., disk full)

© 1999 by Ethan L. Miller 12-21

I/O Calls and Process Waiting

• Question: does a process continue executing while waiting
for an I/O request to complete?

• Blocking I/O: process waits until all data available
» Easy to implement and understand
» Less efficient: requires alternation of I/O and computation

• Non-blocking I/O: call returns as much data is available
» Returns quickly with count of data read
» Allows process to continue quickly with available data

• Asynchronous I/O: process runs while I/O proceeds
» Kernel signals process after the I/O is done
» Application can check I/O progress with system call
» Can be difficult to use
» May provide big gains in application speed (process chunk n

while reading chunk n+1 and writing chunk n-1)

© 1999 by Ethan L. Miller 12-22

Generic I/O Modules in the Kernel

• Scheduling
» Provide queues and queue management for device drivers
» Allow drivers to suspend and wake up processes making I/O

requests

• Buffering & caching
» Provide mechanisms to hold data in kernel memory
» Allow matching of device transfer rate to application rate

» Keep “copy semantics” of I/O - changes don’t affect
previously written data

» Keep commonly used data in memory for fast access

• Device reservations
» Provide locking primitives
» Check for deadlocks (sometimes)

© 1999 by Ethan L. Miller 12-23

Kernel Data Structures

• Buffers & cache
» Description of information in the buffer
» Locking information for buffer

• Open file table
• Per-device information

» Status & other device-specific information
» Requests in queue or in progress
» Processes waiting for results

• Data structures can be complex and heavily interconnected
» Object-oriented methods can simplify matters a bit
» Message passing between components can also help

© 1999 by Ethan L. Miller 12-24

Sending an I/O Request to Hardware

• Determine which device is desired
• Send the request to the appropriate device driver
• Put the request on a queue maintained by the driver
• Allocate kernel buffers necessary to do the transfer, and

mark them as busy
• Perform the I/O operation, copying data to or from the

buffers

• Notify the device driver that the request is complete
• Copy the data from kernel buffers to user data space
• Remove the request from the device queue
• Wake up the waiting process and allow it to continue

© 1999 by Ethan L. Miller 12-25

UNIX Request: Read a Disk Sector

• Determine which disk & sector to read
» File system determines this information
» Use device number to identify a device driver

• Allocate buffer & put request in device queue
» Suspend process until request is complete
» Lock buffer so no other process will use it

• Send the request to the disk
» Device driver knows how to format the request properly

• Mark request complete upon receiving interrupt

• Copy the data from buffer to user process
» Keep a copy in kernel buffer (cache) for possible reuse

• Resume the user process, which can then use the newly
read data

© 1999 by Ethan L. Miller 12-26

How a System Call Works

• Problem: user process wants to do an I/O request
» Operating system has to do the request
» Needs to be a controlled way of getting into the kernel

• Solution: use a “trap” instruction
» Pass parameters in registers
» Pass parameters on stack

– Must translate between user and system addresses
– Need to copy string-type data between user and kernel

addresses
» Return value goes in a register

• Trap handled as an exception
» Interrupts turned off unless kernel explicitly reactivates them
» Turn on interrupts if call will take a long time

© 1999 by Ethan L. Miller 12-27

Performance Issues

• I/O is an important part of computer system performance
» Slow I/O means data moves in and out of computer slowly
» Faster processor doesn’t necessarily help slow I/O

• I/O affects performance by:
» Unnecessary memory copies
» Bloated, inefficient driver code and other kernel code
» Overhead from interrupts and context switches
» Programmed I/O requiring CPU to do all the work

• File systems and networks are particularly important
» High-bandwidth I/O devices
» Frequently-used parts of the I/O system
» Potentially lots of copying because of layers of abstraction in

the OS

© 1999 by Ethan L. Miller 12-28

Improving I/O Performance in the OS

• Reduce the amount of copying
» Do I/O directly to user buffers?
» Try to do data interpretation in-place (networks, file systems)

• Reduce the number of context switches
» Allow processes to wait for multiple I/O requests
» Handle I/O entirely in the kernel without assistance from user

processes

• Cut down on interrupts
» Use devices that do more without CPU direction
» Use polling where appropriate

• Use DMA to shift load from the CPU to the DMA controller

• Balance CPU speed, memory speed, bus speed, and I/O
device speed for highest throughput

