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Memory Management

• Linking & loading programs: assigning memory addresses
• Logical vs. physical address spaces
• Process swapping
• Allocation mechanisms

» Contiguous allocation
» Paging

• Segmentation
• Combining segmentation and paging
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Basic Steps in Running a Program

• Before being run, a program must be
» Brought into memory
» Placed within a process

• For batch systems, there’s a list of programs to be run
» Input queue: collection of programs waiting to be run
» System picks the next program to execute

• For interactive systems, users specify processes to run
» System runs whichever program is specified
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OS Responsibilities for Memory

• Assigning memory locations to instructions & data
» Programs can be loaded anywhere
» Individual instructions & data locations must be associated

with specific memory locations
» Actual instructions may change depending on where the

program and data are loaded

• Finding physical memory into which to place the program
» Find memory space not currently in use for other things
» Manage memory and allocate it appropriately to processes

and other memory users (I/O devices, OS)

• Protect processes from one another
» Don’t allow one process to read or write memory that isn’t its

own
» Allow sharing for efficiency or usability
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Binding Instructions & Data to Memory

• OS must assign addresses to all instructions and data in a
program

• Compile time
» Set starting location (and all others) when program compiled
» Recompile to change location in memory

• Load time
» Compiler generates offsets from the start of the program
» Loader sets all memory locations when program is loaded
» Program may not be relocated once it’s been loaded

• Execution time
» Compiler generates offsets from the start of the program
» Hardware provides registers to point to start of program
» Program may be moved during execution by changing regs
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Linking & Loading

• Goals
» Provide locations for all instructions & data
» Propagate this information to all other instructions & data

• Step 1: compute offset from start of program
» Store computed values in symbol table
» Keep symbolic names in program

• Step 2: substitute actual values using actual locations
» Use symbol table to look up symbol values
» For relocatable code, use offsets from either 0 or a “base”

register set by the operating system

• Step 3: OS loads program into memory and sets base
register (if used)
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Dynamic Loading

• Keep as little in memory as possible
» Don’t load a routine until it’s actually called
» May even reclaim space from routine after using it

• Useful when program has lots of code that’s used
infrequently

» Error handling code
» Code for many different unusual cases

• No special OS help required
» Call to a routine first loads it into memory, then calls it
» Routine could “unload” itself upon finishing
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Dynamic Linking

• Postpone linking (final resolution of addresses) until
execution time

• Stub (small piece of code) used to locate a piece of OS
code

» Ensures that the desired procedure is in memory
» Replaces call to stub with call to actual procedure
» Executes the procedure

• OS needed
» Trap calls to stub
» Load code into memory if needed
» Make sure process can read the code: code must be in

process’ address space
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Overlays

• Divide program into several sections, including a “master”
section

• Keep in memory only those sections (instructions & data)
needed at a particular time

» Allows process to use less memory
» Implemented by programmer (not OS)
» Needs no special OS support

• May be useful for programs with several phases
» Compiler requires two passes: only need space for pass one

or pass two (not both at once)
» Microsoft Word: code for table editor, graphical editor, and

printer not all required at once
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Logical & Physical Address Spaces

• Two different views of memory:
» Program view: logical address space
» Hardware view: physical address space

• Logical address (also called virtual address)
» Used by the process: process never sees physical addresses
» Generated by the CPU

• Physical address
» Memory management unit translates virtual to physical
» Memory hardware (chips) sees physical addresses

• Logical vs. physical addresses
» Same in compile-time and load-time binding schemes
» Different in execution-time address binding schemes
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Memory Management Unit (MMU)

• Piece of hardware that maps virtual addresses to physical
addresses

» May use several different methods to do this
» Relocation register: value in hardware register added to each

address generated by a user process before it’s sent to
physical memory

» Page tables: more on them in a bit…

• User program only uses logical addresses
» Program can’t tell where in physical memory it’s loaded
» Program may be relocated in physical memory as long as

MMU keeps logical addresses the same
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Process Swapping

• Inactive processes consume memory, if not CPU time
• A process can be temporarily moved to a backing store,

and brought back when it’s ready to run again
• Backing store (usually a disk)

» Sufficient space to store copies of all user processes
» Direct (random) access to all of the images

• Swapping takes time
» Time to seek to correct location (relatively small)
» Time to transfer process to or from disk (relatively large): 10

MB process @ 5 MB/sec = 2 seconds!

• Swapping (or something very similar) is found everywhere
» UNIX / Linux
» Microsoft Windows & Macintosh OS
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Contiguous Memory Allocation

• Divide main memory into two partitions
» Operating system (always resident), often in “low” memory

(lower addresses)
» User processes in “high” memory
» Hardware protects operating system?

• Single-partition allocation
» Relocation register scheme protects other processes and and

the operating system from the current process
» Relocation registers:

– Base: smallest physical address in the process (mapped
to a 0 logical address)

– Limit (bounds): maximum logical address for the process
– Accesses greater than the limit are disallowed (cause an

exception to be handled by the OS)
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Multiple-Partition Allocation

• Blocks of available memory (called holes) are scattered
throughout user memory

• Processes are allocated memory from a sufficiently large hole
• Operating system keeps track of

» Allocated partitions (and which process owns them)
» Free partitions (holes)
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Picking a Free Block of Memory

• Given a list of holes, which
hole do we allocate?

• First-fit: allocate the first hole
in the list that’s large enough

• Best-fit
» Allocate the smallest hole

that’s big enough
» Leaves a small leftover hole

• Worst-fit
» Allocate the largest hole
» Leaves a large leftover hole

• First-fit & best-fit are better in
» Speed
» Memory utilization
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Problem: Fragmentation

• Fragmentation: there’s enough memory available in the
system, but it can’t be used to satisfy the request

• External fragmentation: there’s enough free space, but it’s
not contiguous

• Internal fragmentation
» Process isn’t using all of the memory in its partition
» Unused memory is within a partition, not outside it

• Compaction can reduce external fragmentation
» Memory contents are shuffled to combine all free memory

into one large block
» Compaction requires that relocation is dynamic and done at

execution time (probably needs hardware help)
» Processes can’t have outstanding I/O requests to user

memory when they’re moved, so do I/O only into OS buffers
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Solution: Paging

• Paging allows the logical
address space of a process
to be non-contiguous

• Process is allocated more
physical memory when
needed

• Physical memory divided into
fixed-size blocks - frames

• Logical memory divided into
fixed-size blocks - pages

• Keep track of free frames
• Allocate as many frames as

a process has pages
• Use page table to map

logical to physical addresses
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Breaking Up a Logical Address

• Split address from CPU into
two pieces

» Page number (p)
» Page offset (d)

• Page number
» Index into page table
» Page table contains base

address of page in physical
memory

• Page offset
» Added to base address to

get actual physical memory
address

• Page size = 2d bytes

Example:
• 4 KB (=4096 byte) pages
• 32 bit logical addresses

p d

2d = 4096 d = 12

12 bits

32 bit logical address

32-12 = 20 bits
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Address Translation Architecture
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Memory & Paging Structures

Page 0

0

Frame
number

Logical memory (P0)

Page 1

Page 2

Page 3

Page 4

Page 5

Page 1 (P0)

Page 4 (P0)

Page 2 (P0)

Page 5 (P0)

Page 3 (P0)

Page 0 (P0)

1

2

3

4

5

6

7

8

9

10

11

10

0

4

7

2

6

Physical
memory

Page table (P0)

Page 0

Page 1

Logical memory (P1) Page table (P1)

8

1

Page 1 (P1)

Page 0 (P1)



© 1999 by Ethan L. Miller 8-21

Implementing Page Tables in Hardware

• Page table resides in main (physical) memory
• CPU uses special registers for paging

» Page table base register (PTBR) points to the page table
» Page table length register (PTLR) contains length of page

table: restricts maximum legal logical address

• Translating an address requires two memory accesses
» First access reads page table entry (PTE)
» Second access reads the data / instruction from memory

• Reduce number of memory accesses
» Can’t avoid second access (we need the value from memory)
» Eliminate first access by keeping a hardware cache (called a

translation lookaside buffer or TLB) of recently used page
table entries
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Translation Lookaside Buffer (TLB)

• Search the TLB for the
desired logical page number

» Search entries in parallel
» Use standard cache

techniques

• If desired logical page
number is found, get frame
number from TLB

• If desired logical page
number isn’t found

» Get frame number from
page table in memory

» Replace an entry in the TLB
with the logical & physical
page numbers from this
reference
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Handling TLB Misses

• If PTE isn’t found in TLB, OS needs to do the lookup in the
page table

• Lookup can be done in hardware or software
• Hardware TLB replacement

» CPU hardware does page table lookup
» Can be faster than software
» Less flexible than software, and more complex hardware

• Software TLB replacement
» OS gets TLB exception
» Exception handler does page table lookup & places the result

into the TLB
» Program continues after return from exception
» Larger TLB (lower miss rate) can make this feasible
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How Long Do Memory Accesses Take?

• Assume the following times:
» TLB lookup time = a (often zero - overlapped in CPU)
» Memory access time = m

• Hit ratio (h) is percentage of time that a logical page
number is found in the TLB

» Larger TLB usually means higher h
» TLB structure can affect h as well

• Effective access time (an average) is calculated as:
» EAT = (m + a)h + (m + m + a)(1-h)
» EAT =a + (2-h)m

• Interpretation
» Reference always requires TLB lookup, 1 memory access
» TLB misses also require an additional memory reference
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Protecting Memory

• Associate protection bits with each page table entry
» Store bits along with physical frame number

• Valid bit
» “valid” => page is in the process’ logical address space, so

access to it is OK
» “invalid” => page isn’t currently accessible

– Page not in process’ address space?
– Page not in memory?

• Writeable bit
» “writeable” => writes to this page are OK
» “non-writeable” => this page is read-only

• Executable bit: if set, instructions may come from this page
• Access must pass all checks to be allowed
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Two-Level Page Tables

• Problem: page tables can be
too large

» 232 bytes in 4KB pages
need 1 million PTEs

• Solution: use multi-level page
tables

» “Page size” in first page
table is large (megabytes)

» PTE marked invalid in first
page table needs no 2nd
level page table

• 1st level page table has
pointers to 2nd level page
tables

• 2nd level page table has
actual frame numbers in it

...
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More on Two-Level Page Tables

• Tradeoffs between 1st and 2nd level page table sizes
» Total number of bits indexing 1st and 2nd level table is

constant for a given page size and logical address length
» Tradeoff between number of bits indexing 1st and number

indexing 2nd level tables
– More bits in 1st level: fine granularity at 2nd level
– Fewer bits in 1st level: maybe less wasted space?

• All addresses in table are physical addresses
• Protection bits kept in 2nd level table
• Only PTEs from 2nd level table (actual logical -> physical

translations) are cached in TLB
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Two-Level Paging: Example

• System characteristics
» 8 KB pages
» 32-bit logical address divided into 13 bit page offset, 19 bit

page number

• Page number divided into:
» 10 bit page number
» 9 bit page offset

• Logical address looks like this:

» p1 is an index into the 1st level page table
» p2 is an index into the 2nd level page table pointed to by p1

p1 = 10 bits p2 = 9 bits offset = 13 bits

page offsetpage number
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2-Level Address Translation Example

p1 = 10 bits p2 = 9 bits offset = 13 bits

page offsetpage number

...

0

1

p1
...

...

0

1

p2
...

1319

physical address

1st level page table

2nd level page table

main memory

...

0

1

...

 frame
number
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Multilevel Paging Performance Issues

• Each level requires another table lookup
» 2-level paging requires 3 accesses for each reference
» N-level paging requires n+1 accesses per reference

• Using a TLB can make this much faster
» TLB miss rate of 0.5% (actually a bit high for a modern CPU)
» Memory access time of 100 ns
» No penalty for using TLB
» Access time = 0.995 * 100 + 0.005 * 300 = 101 ns
» Only a 1% slowdown!

• Even handling in software is OK!
» TLB miss requires 2 us (2000 ns)
» Access time = 0.995 * 100 + 0.005 * 2000 = 109.5 ns
» Exception handler results in a 10% slowdown
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Inverted Page Table

• Reduce page table size further: keep one entry for each
frame in memory

• PTE contains
» Virtual address pointing to this frame
» Information about the process that owns this page

• Search page table by
» Hashing the virtual page number and process ID
» Starting at the entry corresponding to the hash result
» Search until either the entry is found or a limit is reached

• Frame number in physical memory is the index of the PTE
in which the correct virtual page number is found

• Improve performance by using more advanced hashing
algorithm
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Inverted Page Table Architecture
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Sharing Pages of Physical Memory

• Processes often want to share information with other
processes

» Shared code used in several processes: saves space by
loading only a single copy of the code for multiple processes

» Shared data between processes

• Shared pages should appear at same virtual address in
each process

» Not a requirement, but makes life easier
» Pointers can be shared between processes

• Processes can also have private code & data
» Some PTEs point to shared pages (code & perhaps data)
» Other PTEs point to private pages (code & data)
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Sharing Physical Pages: Example
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Problems with Sharing Physical Pages

• Sharing pages is good!
» Requires less physical memory, particularly for code
» Makes programs load faster (use code already in memory)

• Problems with sharing pages
» Pages usually have the same address in all processes: leads

to difficulties allocating address space
» Changes in a single piece of shared code may require a lot of

recompilation

• Solution: use segmentation
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Segmentation

• Divide address space into segments rather than pages
» A segment is a logical unit from the user’s point of view
» Segments can be any size (large or small)
» Segments can be placed at any location in a process’s

address space (more on that in a bit)

• Processes are composed of one or more segments
• Segments can be

» “Private” code to implement process-specific functions such
as main in your code

» Libraries that have procedures shared by many processes
» Local variables (or groups of them)
» Global variables shared by many processes
» Stack
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How Segments Fit Into Memory

• Note that segments in a process’s address space are not
ordered with respect to one another
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Implementing Segments

• Logical addresses consist of segment number and offset:
<segment number (s), offset (x)>

• Segment table maps logical address into physical address
» Base: starting physical address for each segment
» Limit: size of the segment

• CPU keeps track of segment table location
» Segment table base register (STBR) points to the start of the

segment table in physical memory
» Segment table length register (STLR) indicates how many

segments there are

• Translation is done by:
» Check that segment number is less than STLR
» Look up base of segment using STBR+s
» Add x to base to get physical address
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Advantages of Segments

• Relocation is easy
» Suspend all processes using the segment
» Copy segment to anywhere in memory
» Fix up the segment table to point to the new segment base
» Resume processes using the segment

• Sharing is easy
» All processes use the same segment number for any given

segment
» Processes can use the segment simply by referring to it

• Allocation may be difficult
» Variable-sized objects can lead to external fragmentation
» Use first-fit or best-fit to allocate memory
» Relocate segments to consolidate memory “holes”
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Protecting Segments

• Basic protection bits: each entry in the segment table has
» Valid bit: 1 = segment is valid
» Read/write/execute bits: indicate whether operation is

permissible

• Protection is done on a segment-by-segment basis
» Code sharing occurs at the level of segments
» Memory with different sharing or permitted operations is split

into multiple segments with the same permission bits

• More detailed protection is possible by using a separate
segment table for each process

» Only include segments the process is allowed to access
» Make sure updates cover all of the affected segment tables
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Segmentation Example
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Segmentation with Paging

• Segments have advantages
» Sharing is easier
» Relocatable code is very easy to make

• Paging has advantages
» Objects in memory are fixed size, making allocation easier
» Fragmentation is greatly reduced

• Use both segmentation and paging to get both advantages
• Two possible solutions

» Segment table entry contains pointer to a page table rather
than actual segment (MULTICS)

» Segment table translates from segmented address to virtual
address, which is then translated using page tables (x86)
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Segmentation & Paging in the x86

segment # offset

segment descriptor +

physical address

directory page offset

directory entry

page table entry

page directory base
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Comparing Memory Management Schemes

• Hardware support: some schemes need special hardware
that may not be available on a particular platform

• Performance: the more complex the scheme, the slower it
usually runs

• Fragmentation: how much memory is wasetd?
• Relocation: how easy is it to move information around in

memory, perhaps to reduce fragmentation?
• Sharing: can memory be shared between processes,

reducing total memory usage?

• Protection: how are individual pages protected, particularly
if sharing is possible?

• Swapping: how easy is it to move processes in and out of
memory?


