
© 1999 by Ethan L. Miller 8-1

Memory Management

• Linking & loading programs: assigning memory addresses
• Logical vs. physical address spaces
• Process swapping
• Allocation mechanisms

» Contiguous allocation
» Paging

• Segmentation
• Combining segmentation and paging



© 1999 by Ethan L. Miller 8-2

Basic Steps in Running a Program

• Before being run, a program must be
» Brought into memory
» Placed within a process

• For batch systems, there’s a list of programs to be run
» Input queue: collection of programs waiting to be run
» System picks the next program to execute

• For interactive systems, users specify processes to run
» System runs whichever program is specified



© 1999 by Ethan L. Miller 8-3

OS Responsibilities for Memory

• Assigning memory locations to instructions & data
» Programs can be loaded anywhere
» Individual instructions & data locations must be associated

with specific memory locations
» Actual instructions may change depending on where the

program and data are loaded

• Finding physical memory into which to place the program
» Find memory space not currently in use for other things
» Manage memory and allocate it appropriately to processes

and other memory users (I/O devices, OS)

• Protect processes from one another
» Don’t allow one process to read or write memory that isn’t its

own
» Allow sharing for efficiency or usability



© 1999 by Ethan L. Miller 8-4

Binding Instructions & Data to Memory

• OS must assign addresses to all instructions and data in a
program

• Compile time
» Set starting location (and all others) when program compiled
» Recompile to change location in memory

• Load time
» Compiler generates offsets from the start of the program
» Loader sets all memory locations when program is loaded
» Program may not be relocated once it’s been loaded

• Execution time
» Compiler generates offsets from the start of the program
» Hardware provides registers to point to start of program
» Program may be moved during execution by changing regs



© 1999 by Ethan L. Miller 8-5

Linking & Loading

• Goals
» Provide locations for all instructions & data
» Propagate this information to all other instructions & data

• Step 1: compute offset from start of program
» Store computed values in symbol table
» Keep symbolic names in program

• Step 2: substitute actual values using actual locations
» Use symbol table to look up symbol values
» For relocatable code, use offsets from either 0 or a “base”

register set by the operating system

• Step 3: OS loads program into memory and sets base
register (if used)



© 1999 by Ethan L. Miller 8-6

Dynamic Loading

• Keep as little in memory as possible
» Don’t load a routine until it’s actually called
» May even reclaim space from routine after using it

• Useful when program has lots of code that’s used
infrequently

» Error handling code
» Code for many different unusual cases

• No special OS help required
» Call to a routine first loads it into memory, then calls it
» Routine could “unload” itself upon finishing



© 1999 by Ethan L. Miller 8-7

Dynamic Linking

• Postpone linking (final resolution of addresses) until
execution time

• Stub (small piece of code) used to locate a piece of OS
code

» Ensures that the desired procedure is in memory
» Replaces call to stub with call to actual procedure
» Executes the procedure

• OS needed
» Trap calls to stub
» Load code into memory if needed
» Make sure process can read the code: code must be in

process’ address space



© 1999 by Ethan L. Miller 8-8

Overlays

• Divide program into several sections, including a “master”
section

• Keep in memory only those sections (instructions & data)
needed at a particular time

» Allows process to use less memory
» Implemented by programmer (not OS)
» Needs no special OS support

• May be useful for programs with several phases
» Compiler requires two passes: only need space for pass one

or pass two (not both at once)
» Microsoft Word: code for table editor, graphical editor, and

printer not all required at once



© 1999 by Ethan L. Miller 8-9

Logical & Physical Address Spaces

• Two different views of memory:
» Program view: logical address space
» Hardware view: physical address space

• Logical address (also called virtual address)
» Used by the process: process never sees physical addresses
» Generated by the CPU

• Physical address
» Memory management unit translates virtual to physical
» Memory hardware (chips) sees physical addresses

• Logical vs. physical addresses
» Same in compile-time and load-time binding schemes
» Different in execution-time address binding schemes



© 1999 by Ethan L. Miller 8-10

Memory Management Unit (MMU)

• Piece of hardware that maps virtual addresses to physical
addresses

» May use several different methods to do this
» Relocation register: value in hardware register added to each

address generated by a user process before it’s sent to
physical memory

» Page tables: more on them in a bit…

• User program only uses logical addresses
» Program can’t tell where in physical memory it’s loaded
» Program may be relocated in physical memory as long as

MMU keeps logical addresses the same



© 1999 by Ethan L. Miller 8-11

Process Swapping

• Inactive processes consume memory, if not CPU time
• A process can be temporarily moved to a backing store,

and brought back when it’s ready to run again
• Backing store (usually a disk)

» Sufficient space to store copies of all user processes
» Direct (random) access to all of the images

• Swapping takes time
» Time to seek to correct location (relatively small)
» Time to transfer process to or from disk (relatively large): 10

MB process @ 5 MB/sec = 2 seconds!

• Swapping (or something very similar) is found everywhere
» UNIX / Linux
» Microsoft Windows & Macintosh OS



© 1999 by Ethan L. Miller 8-12

process
P1

process
P0

operating
system

Schematic View of Swapping

disk (backing store)main memory

process
P1

process
P0

 swap
out

 swap
in

 user
space



© 1999 by Ethan L. Miller 8-13

Contiguous Memory Allocation

• Divide main memory into two partitions
» Operating system (always resident), often in “low” memory

(lower addresses)
» User processes in “high” memory
» Hardware protects operating system?

• Single-partition allocation
» Relocation register scheme protects other processes and and

the operating system from the current process
» Relocation registers:

– Base: smallest physical address in the process (mapped
to a 0 logical address)

– Limit (bounds): maximum logical address for the process
– Accesses greater than the limit are disallowed (cause an

exception to be handled by the OS)



© 1999 by Ethan L. Miller 8-14

Multiple-Partition Allocation

• Blocks of available memory (called holes) are scattered
throughout user memory

• Processes are allocated memory from a sufficiently large hole
• Operating system keeps track of

» Allocated partitions (and which process owns them)
» Free partitions (holes)

OS

P2

P7

OS

P2

P4

P7

OS

P2

P9

P8
OS

P2

P8



© 1999 by Ethan L. Miller 8-15

Picking a Free Block of Memory

• Given a list of holes, which
hole do we allocate?

• First-fit: allocate the first hole
in the list that’s large enough

• Best-fit
» Allocate the smallest hole

that’s big enough
» Leaves a small leftover hole

• Worst-fit
» Allocate the largest hole
» Leaves a large leftover hole

• First-fit & best-fit are better in
» Speed
» Memory utilization

Request = 4 MB

6 MB

8 MB

5 MB

6 MB

8 MB

5 MB

6 MB

8 MB

5 MB

2 MB

8 MB

5 MB

6 MB

8 MB

1 MB

6 MB

4 MB

5 MB

Fi
rs

t
B

es
t

W
or

st



© 1999 by Ethan L. Miller 8-16

Problem: Fragmentation

• Fragmentation: there’s enough memory available in the
system, but it can’t be used to satisfy the request

• External fragmentation: there’s enough free space, but it’s
not contiguous

• Internal fragmentation
» Process isn’t using all of the memory in its partition
» Unused memory is within a partition, not outside it

• Compaction can reduce external fragmentation
» Memory contents are shuffled to combine all free memory

into one large block
» Compaction requires that relocation is dynamic and done at

execution time (probably needs hardware help)
» Processes can’t have outstanding I/O requests to user

memory when they’re moved, so do I/O only into OS buffers



© 1999 by Ethan L. Miller 8-17

Solution: Paging

• Paging allows the logical
address space of a process
to be non-contiguous

• Process is allocated more
physical memory when
needed

• Physical memory divided into
fixed-size blocks - frames

• Logical memory divided into
fixed-size blocks - pages

• Keep track of free frames
• Allocate as many frames as

a process has pages
• Use page table to map

logical to physical addresses

Page 0

Page 1

Page 2

Page 3

Logical
memory

Physical
memory

Page 2

Page 3

Page 0

Page 1

0

1

2

3

4

5

6

7

Frame
number



© 1999 by Ethan L. Miller 8-18

Breaking Up a Logical Address

• Split address from CPU into
two pieces

» Page number (p)
» Page offset (d)

• Page number
» Index into page table
» Page table contains base

address of page in physical
memory

• Page offset
» Added to base address to

get actual physical memory
address

• Page size = 2d bytes

Example:
• 4 KB (=4096 byte) pages
• 32 bit logical addresses

p d

2d = 4096 d = 12

12 bits

32 bit logical address

32-12 = 20 bits



© 1999 by Ethan L. Miller 8-19

Address Translation Architecture

page number

p d

page offset

0

1

p-1

p

p+1

f

f d

frame number

...

page table

physical memory

0

1
...

f-1

f

f+1

f+2
...

frame number

CPU



© 1999 by Ethan L. Miller 8-20

Memory & Paging Structures

Page 0

0

Frame
number

Logical memory (P0)

Page 1

Page 2

Page 3

Page 4

Page 5

Page 1 (P0)

Page 4 (P0)

Page 2 (P0)

Page 5 (P0)

Page 3 (P0)

Page 0 (P0)

1

2

3

4

5

6

7

8

9

10

11

10

0

4

7

2

6

Physical
memory

Page table (P0)

Page 0

Page 1

Logical memory (P1) Page table (P1)

8

1

Page 1 (P1)

Page 0 (P1)



© 1999 by Ethan L. Miller 8-21

Implementing Page Tables in Hardware

• Page table resides in main (physical) memory
• CPU uses special registers for paging

» Page table base register (PTBR) points to the page table
» Page table length register (PTLR) contains length of page

table: restricts maximum legal logical address

• Translating an address requires two memory accesses
» First access reads page table entry (PTE)
» Second access reads the data / instruction from memory

• Reduce number of memory accesses
» Can’t avoid second access (we need the value from memory)
» Eliminate first access by keeping a hardware cache (called a

translation lookaside buffer or TLB) of recently used page
table entries



© 1999 by Ethan L. Miller 8-22

Translation Lookaside Buffer (TLB)

• Search the TLB for the
desired logical page number

» Search entries in parallel
» Use standard cache

techniques

• If desired logical page
number is found, get frame
number from TLB

• If desired logical page
number isn’t found

» Get frame number from
page table in memory

» Replace an entry in the TLB
with the logical & physical
page numbers from this
reference

Logical
page #

Physical
frame #

8

unused

2

3

12

29

22

7

3

1

0

12

6

11

4

Example TLB



© 1999 by Ethan L. Miller 8-23

Handling TLB Misses

• If PTE isn’t found in TLB, OS needs to do the lookup in the
page table

• Lookup can be done in hardware or software
• Hardware TLB replacement

» CPU hardware does page table lookup
» Can be faster than software
» Less flexible than software, and more complex hardware

• Software TLB replacement
» OS gets TLB exception
» Exception handler does page table lookup & places the result

into the TLB
» Program continues after return from exception
» Larger TLB (lower miss rate) can make this feasible



© 1999 by Ethan L. Miller 8-24

How Long Do Memory Accesses Take?

• Assume the following times:
» TLB lookup time = a (often zero - overlapped in CPU)
» Memory access time = m

• Hit ratio (h) is percentage of time that a logical page
number is found in the TLB

» Larger TLB usually means higher h
» TLB structure can affect h as well

• Effective access time (an average) is calculated as:
» EAT = (m + a)h + (m + m + a)(1-h)
» EAT =a + (2-h)m

• Interpretation
» Reference always requires TLB lookup, 1 memory access
» TLB misses also require an additional memory reference



© 1999 by Ethan L. Miller 8-25

Protecting Memory

• Associate protection bits with each page table entry
» Store bits along with physical frame number

• Valid bit
» “valid” => page is in the process’ logical address space, so

access to it is OK
» “invalid” => page isn’t currently accessible

– Page not in process’ address space?
– Page not in memory?

• Writeable bit
» “writeable” => writes to this page are OK
» “non-writeable” => this page is read-only

• Executable bit: if set, instructions may come from this page
• Access must pass all checks to be allowed



© 1999 by Ethan L. Miller 8-26

Two-Level Page Tables

• Problem: page tables can be
too large

» 232 bytes in 4KB pages
need 1 million PTEs

• Solution: use multi-level page
tables

» “Page size” in first page
table is large (megabytes)

» PTE marked invalid in first
page table needs no 2nd
level page table

• 1st level page table has
pointers to 2nd level page
tables

• 2nd level page table has
actual frame numbers in it

...

1st level
page table

...
412

500

237

...
961

613

125

...
955

960

884

2nd level
page tables

...

...

...

...

...

...

...

...

...

main
memory



© 1999 by Ethan L. Miller 8-27

More on Two-Level Page Tables

• Tradeoffs between 1st and 2nd level page table sizes
» Total number of bits indexing 1st and 2nd level table is

constant for a given page size and logical address length
» Tradeoff between number of bits indexing 1st and number

indexing 2nd level tables
– More bits in 1st level: fine granularity at 2nd level
– Fewer bits in 1st level: maybe less wasted space?

• All addresses in table are physical addresses
• Protection bits kept in 2nd level table
• Only PTEs from 2nd level table (actual logical -> physical

translations) are cached in TLB



© 1999 by Ethan L. Miller 8-28

Two-Level Paging: Example

• System characteristics
» 8 KB pages
» 32-bit logical address divided into 13 bit page offset, 19 bit

page number

• Page number divided into:
» 10 bit page number
» 9 bit page offset

• Logical address looks like this:

» p1 is an index into the 1st level page table
» p2 is an index into the 2nd level page table pointed to by p1

p1 = 10 bits p2 = 9 bits offset = 13 bits

page offsetpage number



© 1999 by Ethan L. Miller 8-29

2-Level Address Translation Example

p1 = 10 bits p2 = 9 bits offset = 13 bits

page offsetpage number

...

0

1

p1
...

...

0

1

p2
...

1319

physical address

1st level page table

2nd level page table

main memory

...

0

1

...

 frame
number



© 1999 by Ethan L. Miller 8-30

Multilevel Paging Performance Issues

• Each level requires another table lookup
» 2-level paging requires 3 accesses for each reference
» N-level paging requires n+1 accesses per reference

• Using a TLB can make this much faster
» TLB miss rate of 0.5% (actually a bit high for a modern CPU)
» Memory access time of 100 ns
» No penalty for using TLB
» Access time = 0.995 * 100 + 0.005 * 300 = 101 ns
» Only a 1% slowdown!

• Even handling in software is OK!
» TLB miss requires 2 us (2000 ns)
» Access time = 0.995 * 100 + 0.005 * 2000 = 109.5 ns
» Exception handler results in a 10% slowdown



© 1999 by Ethan L. Miller 8-31

Inverted Page Table

• Reduce page table size further: keep one entry for each
frame in memory

• PTE contains
» Virtual address pointing to this frame
» Information about the process that owns this page

• Search page table by
» Hashing the virtual page number and process ID
» Starting at the entry corresponding to the hash result
» Search until either the entry is found or a limit is reached

• Frame number in physical memory is the index of the PTE
in which the correct virtual page number is found

• Improve performance by using more advanced hashing
algorithm



© 1999 by Ethan L. Miller 8-32

Inverted Page Table Architecture

process ID p = 19 bits offset = 13 bits

page number

1319

physical address

inverted page table

main memory

...

0

1

...

 frame
number

page offset

pid p

pid0 p0

pid1 p1

pidk pk

...

...

0

1

k

search

k



© 1999 by Ethan L. Miller 8-33

Sharing Pages of Physical Memory

• Processes often want to share information with other
processes

» Shared code used in several processes: saves space by
loading only a single copy of the code for multiple processes

» Shared data between processes

• Shared pages should appear at same virtual address in
each process

» Not a requirement, but makes life easier
» Pointers can be shared between processes

• Processes can also have private code & data
» Some PTEs point to shared pages (code & perhaps data)
» Other PTEs point to private pages (code & data)



© 1999 by Ethan L. Miller 8-34

Sharing Physical Pages: Example

main memory

0

1

...

2

3

4

5

6

7

8

9

10

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Process 0

Process 1

Process 2

CodeB.0

CodeB.0

CodeA.0

Lib.1

Lib.0

Lib.1

Lib.0

Lib.1

Lib.0

Data1.1

Data1.0

Data2.1

Data2.0

Data0.1

Data0.0

11

CodeA.0

Lib.0

Data0.1

Data0.0

Data1.1

Data1.0

CodeB.0

Lib.1

Data2.1

Data2.0

0

7

8

9

10

Page table
for Process 2

0

3

11

1

10

Page table
for Process 0

0

7

6

5

10

Page table
for Process 1



© 1999 by Ethan L. Miller 8-35

Problems with Sharing Physical Pages

• Sharing pages is good!
» Requires less physical memory, particularly for code
» Makes programs load faster (use code already in memory)

• Problems with sharing pages
» Pages usually have the same address in all processes: leads

to difficulties allocating address space
» Changes in a single piece of shared code may require a lot of

recompilation

• Solution: use segmentation



© 1999 by Ethan L. Miller 8-36

Segmentation

• Divide address space into segments rather than pages
» A segment is a logical unit from the user’s point of view
» Segments can be any size (large or small)
» Segments can be placed at any location in a process’s

address space (more on that in a bit)

• Processes are composed of one or more segments
• Segments can be

» “Private” code to implement process-specific functions such
as main in your code

» Libraries that have procedures shared by many processes
» Local variables (or groups of them)
» Global variables shared by many processes
» Stack



© 1999 by Ethan L. Miller 8-37

How Segments Fit Into Memory

• Note that segments in a process’s address space are not
ordered with respect to one another

libc

code0

stack1

vars1

libc

libc

code0

stack1

vars1

code1

code1

stack0

vars0

libm
libm

stack0

vars0

physical
memory



© 1999 by Ethan L. Miller 8-38

Implementing Segments

• Logical addresses consist of segment number and offset:
<segment number (s), offset (x)>

• Segment table maps logical address into physical address
» Base: starting physical address for each segment
» Limit: size of the segment

• CPU keeps track of segment table location
» Segment table base register (STBR) points to the start of the

segment table in physical memory
» Segment table length register (STLR) indicates how many

segments there are

• Translation is done by:
» Check that segment number is less than STLR
» Look up base of segment using STBR+s
» Add x to base to get physical address



© 1999 by Ethan L. Miller 8-39

Advantages of Segments

• Relocation is easy
» Suspend all processes using the segment
» Copy segment to anywhere in memory
» Fix up the segment table to point to the new segment base
» Resume processes using the segment

• Sharing is easy
» All processes use the same segment number for any given

segment
» Processes can use the segment simply by referring to it

• Allocation may be difficult
» Variable-sized objects can lead to external fragmentation
» Use first-fit or best-fit to allocate memory
» Relocate segments to consolidate memory “holes”



© 1999 by Ethan L. Miller 8-40

Protecting Segments

• Basic protection bits: each entry in the segment table has
» Valid bit: 1 = segment is valid
» Read/write/execute bits: indicate whether operation is

permissible

• Protection is done on a segment-by-segment basis
» Code sharing occurs at the level of segments
» Memory with different sharing or permitted operations is split

into multiple segments with the same permission bits

• More detailed protection is possible by using a separate
segment table for each process

» Only include segments the process is allowed to access
» Make sure updates cover all of the affected segment tables



© 1999 by Ethan L. Miller 8-41

Segmentation Example

libc

code 1

libc

data 1

code 2

data 2

Segment 1

Segment 0

Segment 2

Segment 0

Segment 2

Segment 1

libc

code 1

code 2

data 2

data 1

38004

55020

72116

76520

82012

86336

92056

58888

base limit

72116

38004

86336

4404

17016

5720

segment table
Process 1

Process 1

base limit

76520

38004

55020

5492

17016

3868

segment table
Process 2

Process 2
physical memory

0

1

2

0

1

2



© 1999 by Ethan L. Miller 8-42

Segmentation with Paging

• Segments have advantages
» Sharing is easier
» Relocatable code is very easy to make

• Paging has advantages
» Objects in memory are fixed size, making allocation easier
» Fragmentation is greatly reduced

• Use both segmentation and paging to get both advantages
• Two possible solutions

» Segment table entry contains pointer to a page table rather
than actual segment (MULTICS)

» Segment table translates from segmented address to virtual
address, which is then translated using page tables (x86)



© 1999 by Ethan L. Miller 8-43

Segmentation & Paging in the x86

segment # offset

segment descriptor +

physical address

directory page offset

directory entry

page table entry

page directory base

page frame

page table

page directory

linear address
descriptor table



© 1999 by Ethan L. Miller 8-44

Comparing Memory Management Schemes

• Hardware support: some schemes need special hardware
that may not be available on a particular platform

• Performance: the more complex the scheme, the slower it
usually runs

• Fragmentation: how much memory is wasetd?
• Relocation: how easy is it to move information around in

memory, perhaps to reduce fragmentation?
• Sharing: can memory be shared between processes,

reducing total memory usage?

• Protection: how are individual pages protected, particularly
if sharing is possible?

• Swapping: how easy is it to move processes in and out of
memory?


