
© 1999 by Ethan L. Miller 6-1

Chapter 6 : Process Synchronization

• Background
• Critical sections
• Hardware for synchronization
• Semaphores
• Classical synchronization problems

» Bounded-buffer
» Readers & writers
» Dining philosophers

• Critical regions
• Monitors

© 1999 by Ethan L. Miller 6-2

Background

• Multiple processes running at the same time may
interleave their accesses to shared variables

» Processes can be interrupted anywhere
» Consistency must be maintained regardless of where switches

occur

• Multiple processes need to synchronize amongst
themselves to ensure

» Consistency of shared variables
» Orderly execution of code in different processes (A must

execute before B, etc.)

© 1999 by Ethan L. Miller 6-3

Example: Bounded Buffer Problem

Shared variables
const int n;
typedef … Item;
Item buffer[n];
int in = 0, out = 0,
 counter = 0;

Atomic statements:
Counter += 1;

Counter -= 1;

Producer
Item pitm;
while (1) {
 …
 produce an item into pitm
 …
 while (counter == n)
 ;
 buffer[in] = pitm;
 in = (in+1) % n;
 counter += 1;
}

Consumer
Item citm;
while (1) {
 while (counter == 0)
 ;
 citm = buffer[out];
 out = (out+1) % n;
 counter -= 1;
 …
 consume the item in citm
 …
}

© 1999 by Ethan L. Miller 6-4

So Why Doesn’t It Work?

• Modifying a variable has two parts
» Computing the new value for the variable

» Storing the new value into the variable

• Example: counter = counter + 1
» First, calculate counter+1

» Next, store the new value into counter

• Problem: two processes may modify the variable

Producer
…
A1 LOAD r2,count
A2 ADD r2,r2,#1
A3 STORE r2,count
…

Consumer
…
B1 LOAD r3,count
B2 SUB r3,r3,#1
B3 STORE r3,count
…

© 1999 by Ethan L. Miller 6-5

Solution: Critical Sections

• n processes competing to use some shared data
• Each process has a critical section in which the shared

data is accessed
• At most one process may be in the critical section at any

time
» No other process may execute in its critical section when one

process is already there
» Other processes may need to wait

• General structure of a process:
while (1) {
 enter section
 critical section
 exit section
 rest of process
}

© 1999 by Ethan L. Miller 6-6

Critical Section Problem: Requirements

• Mutual Exclusion
» If process Pi is executing in its critical section, no other

processes can be executing in their critical sections.

• Progress
» If no process is executing in its critical section and there exist

some processes that want to enter their own critical sections,
then the selection of the next process to enter the critical section
can’t be postponed indefinitely.

• Bounded Waiting
» A bound must exist on how many processes are allowed to

enter their critical sections before a waiting process is allowed to
enter its own critical section.

– Processes execute at non-zero speed
– No assumption about relative speed of processes

© 1999 by Ethan L. Miller 6-7

Solving the Critical Section Problem

• Only two processes, P0 and P1
• General structure of Pi (and other process Pj)

while (1) {

 enter critical section

 critical section

 exit critical section

 remainder of code

}

• Processes share variables to synchronize their actions

© 1999 by Ethan L. Miller 6-8

Critical Sections: First Try

• Satisfies mutual exclusion, but progress not guaranteed
» Problem: what if Pi wants to go twice in a row?
» Pi must wait for Pj to reset the turn variable

Shared variables
// turn == i means Pi can
// enter its critical
// section.
int turn = 0;

Process Pi
int i; // my process ID
int j; // other process ID
while (1) {
 while (turn != i)
 ;
 // critical section
 turn = j;
 // remainder of code
}

© 1999 by Ethan L. Miller 6-9

Critical Sections: Second Try

• Satisfies mutual exclusion, but not bounded waiting
» Problem: Pi can exit the critical section and reenter it without allowing Pj

to enter the critical section

» This occurs if Pj is suspended in the middle of the waiting loop while Pi
executes an entire loop

Shared variables
// flag[i] == 1 means Pi
// can enter its
// critical section.
int flag[2] = {0,0};

Process Pi
int i; // my process ID
int j; // other process ID
while (1) {
 flag[i] = 1;
 while (flag[j] == 1)
 ;
 // critical section
 flag[i] = 0;
 // remainder of code
}

© 1999 by Ethan L. Miller 6-10

Critical Sections: Third Try

• Combine first and second tries
• Satisfies all three requirements, solving the critical sections

problem for two processes
» Pi gives Pj a chance to enter before it does so itself

Shared variables
// flag[i] means that
// Pi wants to be in the
// critical section
int flag[2] = {0,0};
// turn==i means that
// Pi is allowed to
// enter c.s. if it wants
// to do so
int turn = 0;

Process Pi
int i; // my process ID
int j; // other process ID
while (1) {
 flag[i] = 1;
 turn = j;
 while (flag[j] && turn == j)
 ;
 // critical section
 flag[i] = 0;
 // remainder of code
}

© 1999 by Ethan L. Miller 6-11

What About More Than Two Processes?

• Critical section for n processes (n>=2)
• Use the bakery algorithm

» Each process gets a number before entering its critical section
» Holder of the smallest number enters the critical section
» Ties broken by allowing process with lowest process ID to go

first (Pi goes before Pj if i<j)
» Numbers assigned in increasing order (such as

1,1,2,3,4,5,5,5,…)
» Each process receives a number that is strictly greater than the

last number it received (so no process gets the same number
twice)

© 1999 by Ethan L. Miller 6-12

Bakery Algorithm

• Notation used
» <<< is lexicographical order on (ticket#, process ID)

» (a,b) <<< (c,d) if (a<c) or ((a==c) and (b<d))

» Max(a0,a1,…,an-1) is a number k such that k>=ai for all I

• Shared data
» choosing initialized to 0

» number initialized to 0

int n; // # of processes
int choosing[n];
int number[n];

© 1999 by Ethan L. Miller 6-13

Bakery Algorithm: Code

while (1) { // i is the number of the current process
 choosing[i] = 1;
 number[i] = max(number[0],number[1],…,number[n-1]) + 1;
 choosing[i] = 0;
 for (j = 0; j < n; j++) {
 while (choosing[j]) // wait while j is choosing a
 ; // number
 // Wait while j wants to enter and has a better number
 // than we do. In case of a tie, allow j to go if
 // its process ID is lower than ours
 while ((number[j] != 0) &&
 ((number[j] < number[i]) ||
 ((number[j] == number[i]) && (j < i))))
 ;
 }
 // critical section
 number[i] = 0;
 // rest of code
}

© 1999 by Ethan L. Miller 6-14

Hardware for Synchronization

• Prior methods work, but…
» May be somewhat complex
» Require busy waiting: process spins in a loop waiting for

something to happen, wasting CPU time

• Solution: use hardware
• Several hardware methods

» Test & set: test a variable and set it in one instruction
» Atomic swap: switch register & memory in one instruction
» Turn off interrupts: process won’t be switched out unless it asks

to be suspended

© 1999 by Ethan L. Miller 6-15

Mutual Exclusion Using Hardware

• Single shared variable
lock

• Still requires busy waiting,
but code is much simpler

• Two versions
» Test and set

» Swap

• Works for any number of
processes

• Possible problem with
requirements

» Non-concurrent code can lead
to unbounded waiting

Code for process Pi
while (1) {
 while (TestAndSet(lock))
 ;
 // critical section
 lock = 0;
 // remainder of code
}

Code for process Pi
while (1) {
 while (Swap(lock,1) == 1)
 ;
 // critical section
 lock = 0;
 // remainder of code
}

int lock = 0;

© 1999 by Ethan L. Miller 6-16

Eliminating Busy Waiting

• Problem: previous solutions waste CPU time
» Both hardware and software solutions require spin locks
» Allow processes to sleep while they wait to execute their critical

sections

• Solution: use semaphores
» Synchronization mechanism that doesn’t require busy waiting

• Implementation
» Semaphore S accessed by two atomic operations

– Wait(S): while (S<=0) {}; S-= 1;
– Signal(S): S+=1;

» Wait() is another name for P()
» Signal() is another name for V()
» Modify implementation to eliminate busy wait from Wait()

© 1999 by Ethan L. Miller 6-17

Critical Sections Using Semaphores

Code for process Pi
while (1) {
 wait(mutex);
 // critical section
 signal(mutex);
 // remainder of code
}

Shared variables
Semaphore mutex;

• Define a class called
Semaphore

» Class allows more complex
implementations for
semaphores

» Details hidden from
processes

• Code for individual process
is simple

© 1999 by Ethan L. Miller 6-18

Implementing Semaphores with Blocking

• Assume two operations:
» Block(): suspends current

process

» Wakeup(P): allows process P
to resume execution

• Semaphore is a class
» Track value of semaphore

» Keep a list of processes
waiting for the semaphore

• Operations still atomic

class Semaphore {
 int value;
 ProcessList pl;
 void Wait ();
 void Signal ();
};

Semaphore code
Semaphore::Wait ()
{
 value -= 1;
 if (value < 0) {
 // add this process to pl
 Block ();
 }
}
Semaphore::Signal () {
Process P;
 value += 1;
 if (value <= 0) {
 // remove a process P
 // from pl
 Wakeup (P);
 }
}

© 1999 by Ethan L. Miller 6-19

Semaphores for General Synchronization

• We want to execute B in P1 only after A executes in P0

• Use a semaphore initialized to 0
• Use Signal() to notify P1 at the appropriate time

Process P0
 .
 .
 .
// Execute code for A
flag.Signal ();

Process P1
 .
 .
 .
flag.Wait ();
// Execute code for B

Shared variables
// flag initialized to 0
Semaphore flag;

© 1999 by Ethan L. Miller 6-20

Types of Semaphores

• Two different types of semaphores
» Counting semaphores
» Binary semaphores

• Counting semaphore
» Value can range over an unrestricted range

• Binary semaphore
» Only two values possible

– 1 means the semaphore is available
– 0 means a process has acquired the semaphore

» May be simpler to implement

• Possible to implement one type using the other

© 1999 by Ethan L. Miller 6-21

Using Binary Semaphores

Semaphore::Signal ()
{
 S1.Wait();
 count += 1;
 if (count <= 0) {
 S2.Signal();
 }
 S1.Signal();
}

Semaphore::Wait()
{
 S3.Wait();
 S1.Wait();
 count -= 1;
 if (count < 0) {
 S1.Signal ();
 S2.Wait ();
 } else {
 S1.Signal ();
 }
 S3.Signal ();
}

class Semaphore {
 int count;
 BinSem S1(1),S2(0),S3(1);
 void Wait ();
 void Signal();
}

© 1999 by Ethan L. Miller 6-22

Deadlock and Starvation

• Deadlock: two or more
processes are waiting
indefinitely for an event that
can only by caused by a
waiting process

» P0 gets A, needs B

» P1 gets B, needs A

» Each process waiting for the
other to signal

• Starvation: indefinite
blocking

» Process is never removed
from the semaphore queue in
which its suspended

» May be caused by ordering in
queues (priority)

Process P0
A.Wait();
B.Wait();
 .
 .
 .
B.Signal();
A.Signal();

Process P1
B.Wait();
A.Wait();
 .
 .
 .
A.Signal();
B.Signal();

Shared variables
Semaphore A(1),B(1);

© 1999 by Ethan L. Miller 6-23

Classical Synchronization Problems

• Bounded Buffer
» Multiple producers and consumers
» Synchronize access to shared buffer

• Readers & Writers
» Many processes that may read and/or write
» Only one writer allowed at any time
» Many readers allowed, but not while a process is writing

• Dining Philosophers
» Resource allocation problem
» N processes and limited resources to perform sequence of tasks

• Goal: use semaphores to implement solutions to these
problems

© 1999 by Ethan L. Miller 6-24

Bounded Buffer Problem

• Goal: implement producer-consumer without busy waiting

Producer
int in = 0;
Item pitem;
While (1) {
 // produce an item
 // into pitem
 empty.Wait();
 mutex.Wait();
 buffer[in] = pitem;
 in = (in+1) % n;
 mutex.Signal();
 full.Signal();
}

const int n;
Semaphore empty(n),full(0),mutex(1);
Item buffer[n];

Consumer
int out = 0;
Item citem;
While (1) {
 full.Wait();
 mutex.Wait();
 citem = buffer[out];
 out = (out+1) % n;
 mutex.Signal();
 empty.Signal();
 // consume item from
 // citem
}

© 1999 by Ethan L. Miller 6-25

Readers-Writers Problem

Reader process
…
mutex.Wait();
nreaders += 1;
if (nreaders == 1) // wait if
 writing.Wait(); // 1st reader
mutex.Signal();
// Read some stuff
mutex.Wait();
nreaders -= 1;
if (nreaders == 0) // signal if
 writing.Signal(); // last reader
mutex.Signal();
…

Shared variables
int nreaders;
Semaphore mutex(1), writing(1);

Writer process
…
writing.Wait();
// Write some stuff
writing.Signal();
…

© 1999 by Ethan L. Miller 6-26

Dining Philosophers

• N philosophers around a
table

» All are hungry

» All like to think

• N chopsticks available
» 1 between each pair of

philosophers

• Philosophers need two
chopsticks to eat

• Philosophers alternate
between eating and thinking

• Goal: coordinate use of
chopsticks

© 1999 by Ethan L. Miller 6-27

Dining Philosophers: Solution 1

• Use a semaphore for each
chopstick

• A hungry philosopher
» Gets the chopstick to his right

» Gets the chopstick to his left

» Eats

» Puts down the chopsticks

• Potential problems?
» Deadlock

» Fairness

Code for philosopher i
while(1) {
 chopstick[i].Wait();
 chopstick[(i+1)%n].Wait();
 // eat
 chopstick[i].Signal();
 chopstick[(i+1)%n].Signal();
 // think
}

Shared variables
const int n;
// initialize to 1
Semaphore chopstick[n];

© 1999 by Ethan L. Miller 6-28

Dining Philosophers: Solution 2

• Use a semaphore for each
chopstick

• A hungry philosopher
» Gets lower, then higher

numbered chopstick

» Eats

» Puts down the chopsticks

• Potential problems?
» Deadlock

» Fairness

Code for philosopher i
int i1,i1;
while(1) {
 if (i != (n-1)) {
 i1 = i;
 i2 = i+1;
 } else {
 i1 = 0;
 i2 = n-1;
 }
 chopstick[i1].Wait();
 chopstick[i2].Wait();
 // eat
 chopstick[i1].Signal();
 chopstick[i2].Signal();
 // think
}

Shared variables
const int n;
// initialize to 1
Semaphore chopstick[n];

© 1999 by Ethan L. Miller 6-29

Different Synchronization Mechanisms

• Semaphores are good, but...
» Prone to programming errors

– Reverse order of operations
– Forget to Signal() after Wait()

» Require effort from programmers to get it right
» Don’t provide high-level view of structures

• Consider alternate synchronization mechanisms
» Critical regions
» Monitors
» Locks & condition variables

© 1999 by Ethan L. Miller 6-30

Critical Regions

• More general solution to accessing shared variables
» Shared variables accessed within regions
» Regions referring to the same shared variable exclude each

other, limiting access to one process at a time
» Different processes can access different regions that don’t use

the same variables simultaneously

• Increased flexibility
» Allows more simultaneous execution
» Enforces mutual exclusion - harder to make programming errors

• Solution provided in some languages
» Not provided in standard C/C++
» Can be emulated using semaphores

© 1999 by Ethan L. Miller 6-31

Critical Regions: Details

• Region usage:
region r when cond
 {actions}

• Only one process can be in a region labeled r
» Multiple labels allow different sets of mutual exclusion regions

• A process can enter region only when condition cond is
true

» Condition evaluated in mutual exclusion as well

• Critical regions can be implemented using semaphores

© 1999 by Ethan L. Miller 6-32

Monitors

• A monitor is another kind of high-level synchronization
primitive

» One monitor has multiple entry points
» Only one process may be in the monitor at any time
» Enforces mutual exclusion - less chance for programming errors

• Monitors provided by high-level language
» Variables belonging to monitor are protected from simultaneous

access
» Procedures in monitor are guaranteed to have mutual exclusion

• Monitor implementation
» Language / compiler handles implementation
» Can be implemented using semaphores

© 1999 by Ethan L. Miller 6-33

Monitor Usage

monitor mon {
 int foo;
 int bar;
 double arr[100];
 void proc1(…) {
 }
 void proc2(…) {
 }
 void mon() { // initialization code
 }
};

• This looks like C++ code, but it’s not supported by C++
• Provides the following features:

» Variables foo, bar, and arr are accessible only by proc1 & proc2

» Only one process can be executing in either proc1 or proc2 at any time

© 1999 by Ethan L. Miller 6-34

Condition Variables in Monitors

• Problem: how can a process wait inside a monitor?
» Can’t simply sleep: there’s no way for anyone else to enter
» Solution: use a condition variable

• Condition variables support two operations
» Wait(): suspend this process until signaled
» Signal(): wake up exactly one process waiting on this condition

variable
– If no process is waiting, signal has no effect
– Signals on condition variables aren’t “saved up”

• Condition variables are only usable within monitors
» Process must be in monitor to signal on a condition variable
» Question: which process gets the monitor after Signal()?

© 1999 by Ethan L. Miller 6-35

Monitor Semantics

• Problem: P signals on condition variable X, waking Q
» Both can’t be active in the monitor at the same time
» Which one continues first?

• Mesa semantics
» Signaling process (P) continues first
» Q resumes when P leaves the monitor
» Seems more logical: why suspend P when it signals?

• Hoare semantics
» Awakened process (Q) continues first
» P resumes when Q leaves the monitor
» May be better: condition that Q wanted may no longer hold when

P leaves the monitor

• For project, use Mesa semantics

© 1999 by Ethan L. Miller 6-36

Locks & Condition Variables

• Monitors require native language support
• Provide monitor support using special data types and

procedures
» Locks (Acquire(), Release())
» Condition variables (Wait(), Signal())

• Lock usage
» Acquiring a lock == entering a monitor
» Releasing a lock == leaving a monitor

• Condition variable usage
» Each condition variable is associated with exactly one lock
» Lock must be held to use condition variable
» Waiting on a condition variable releases the lock implicitly
» Returning from Wait() on a condition variable reacquires the lock

© 1999 by Ethan L. Miller 6-37

Dining Philosophers with Locks

Shared variables
const int n;
// initialize to THINK
int state[n];
Lock mutex;
// use mutex for self
Condition self[n];

Code for philosopher j
while (1) {
 // pickup chopstick
 mutex.Acquire();
 state[j] = HUNGRY;
 test(j);
 if (state[j] != EAT)
 self.Wait();
 mutex.Release();
 // eat
 mutex.Acquire();
 state[j] = THINK;
 test((j+1)%n); // next
 test((j+n-1)%n); // prev
 mutex.Release();
 // think
}

void test(int k)
{
 if ((state[(k+n-1)%n)]!=EAT) &&
 (state[k]==HUNGRY) &&
 (state[(k+1)%n]!=EAT)) {
 state[k] = EAT;
 self[k].Signal();
 }
}

© 1999 by Ethan L. Miller 6-38

Implementing Locks with Semaphores

class Lock {
 Semaphore mutex(1);
 Semaphore next(1);
 int nextCount = 0;
};

Lock::Acquire()
{
 mutex.Wait();
}

Lock::Release()
{
 if (nextCount > 0)
 next.Signal();
 else
 mutex.Signal();
}

• Use mutex to ensure
exclusion within the lock
bounds

• Use next to give lock to
processes with a higher
priority (why?)

• nextCount indicates
whether there are any
higher priority waiters

© 1999 by Ethan L. Miller 6-39

Implementing Condition Variables

class Condition {
 Lock *lock;
 Semaphore condSem(0);
 int semCount = 0;
};

Condition::Wait ()
{
 semCount += 1;
 if (lock->nextCount > 0)
 lock->next.Signal();
 else
 lock->mutex.Signal();
 condSem.Wait ();
 semCount -= 1;
}

Condition::Signal ()
{
 if (semCount > 0) {
 lock->nextCount += 1;
 condSem.Signal ();
 lock->next.Wait ();
 lock->nextCount -= 1;
 }
}

• Are these Hoare or Mesa
semantics?

• Can there be multiple
condition variables for a
single Lock?

