
© 1999 by Ethan L. Miller 5-1

Chapter 5: Scheduling

• Definitions for CPU scheduling
• Picking criteria used to schedule processes
• Choosing an algorithm to schedule processes
• Advanced kinds of CPU scheduling

» Multiprocessor CPU scheduling
» Real-time scheduling

• Evaluating scheduling algorithms

© 1999 by Ethan L. Miller 5-2

Definitions Used in CPU Scheduling

• Multiprogramming: the ability to switch between multiple
programs (processes) on a single CPU

• CPU burst
» Period of CPU time used by a process between I/O requests
» Duration varies depending on code being run

• CPU scheduler
» Selects the process to run next using one of several methods

(scheduling algorithms) to select the process
» Tells the dispatcher to run the process

• Dispatcher
» Switches the process context
» Switches to user mode (if necessary)
» Returns to where the CPU left off

© 1999 by Ethan L. Miller 5-3

Types of Scheduling

• CPU scheduler makes decisions when any process
» Switches from running to waiting state
» Terminates
» Switches from running to ready state
» Switches from waiting to ready state

• First two mechanisms are non-preemptive
» Process must voluntarily give up the CPU
» No unexpected switch from running to ready

• Second two mechanisms are preemptive
» Process can be forced to give up the CPU
» Each ready process gets a fraction of the CPU

© 1999 by Ethan L. Miller 5-4

CPU Burst Duration

• Multiprogramming provides
best response time

» Utilization is good
» Short processes get good

response time

• Processes execute in bursts
» Alternate CPU usage and

I/O usage (process is in wait
state)

» CPU bursts tend to be short
(most under 20 ms)

0

20

40

60

80

100

120

140

160

0 20 40

Burst duration (ms)

© 1999 by Ethan L. Miller 5-5

Criteria for Scheduling

• Overall goals:
» Keep the CPU as busy as possible
» Provide good response time for users

• Statistics of interest
» Throughput: number of processes that finish per unit time
» Turnaround time: total (wall clock) time to run a particular

process

» Waiting time: time a process has been waiting in the ready
queue

– Doesn’t include time waiting for I/O
» Response time: time it takes from when a request was

submitted until the first response is produced
– Not the time until process finishes!
– Often, response is necessary if process is long-running

© 1999 by Ethan L. Miller 5-6

What Makes a Good CPU Schedule?

• Maximum CPU utilization: CPU always used
• Minimum response time: makes users happy
• Minimum waiting time

» Makes users happy
» Reduces number of processes in process table

• Maximum throughput: more processes finishing is better

• Minimum turnaround time: users like their programs to
finish faster

© 1999 by Ethan L. Miller 5-7

CPU Scheduling Algorithms

• Use various characteristics of processes to pick the one to
run next
» Process priority
» Length of time a process has been running
» Time it has left
» When it last ran
» Others?

• Try to optimize one or more of the scheduling criteria
» Generally impossible to optimize all criteria at once
» Pick criteria to optimize based on type of computer system

© 1999 by Ethan L. Miller 5-8

First-Come, First-Served (FCFS)

• Run processes in the order they were started
• Non-preemptive: processes run until they terminate or

make an I/O request
• Example: three processes

» P1: burst time 20
» P2: burst time 5
» P3: burst time 8

• Processes arrive in order P1, P2, P3

• Waiting time for P1=0, P2=20, P3=25
• Average waiting time = (0+20+25)/3 = 15

P2 P3P1

0 20 25 33

© 1999 by Ethan L. Miller 5-9

First-Come, First-Served (FCFS)

• Example: three processes
» P1: burst time 20
» P2: burst time 5
» P3: burst time 8

• Processes arrive in order P2, P3, P1
• Waiting time for P1=13, P2=0, P3=5
• Average waiting time = (5+0+13)/3 = 6

• Exhibits the convoy effect
» Waiting time much lower
» Short processes not stuck behind long process

P2 P3 P1

0 5 13 33

© 1999 by Ethan L. Miller 5-10

Shortest Job First (SJF)

• Pick the process whose CPU burst is shortest
» Requires knowledge of burst times in advance of schedule

• Two possibilities:
» Non-preemptive: the process keeps the CPU until it finishes

its CPU burst
» Preemptive: if a new process arrives, preempt if the new

process’s burst time is shorter than the remainder of the
current process’ burst time. Also known as Shortest-Time-
Remaining-First (SRTF)

• SJF is optimal for waiting time
» Minimum average waiting time for a given set of processes
» Not necessarily optimal for other criteria

© 1999 by Ethan L. Miller 5-11

Non-Preemptive SJF

• Four processes:
» P1 arrives at 0.0, burst time 7

» P2 arrives at 2.0, burst time 4
» P3 arrives at 4.0, burst time 1
» P4 arrives at 5.0, burst time 4

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

1 1

2 2

3 3

4 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time

© 1999 by Ethan L. Miller 5-12

Preemptive SJF

• Four processes:
» P1 arrives at 0.0, burst time 7

» P2 arrives at 2.0, burst time 4
» P3 arrives at 4.0, burst time 1
» P4 arrives at 5.0, burst time 4

• Average waiting time = (9 + 0 + 1 + 2)/4 = 3

1 1 1 1

2 2 2 2

33 3

4 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time

© 1999 by Ethan L. Miller 5-13

How Long Is The Next CPU Burst?

• Don’t know in advance
» Estimate the length using previous behavior
» Use a formula based on one or more previous bursts

• Use exponential averaging to determine length
» tn = actual length of nth CPU burst
» xn = predicted length of nth CPU burst
» Averaging factor k, 0 <= k <= 1
» Predict xn+1 = k tn + (1-k) xn

© 1999 by Ethan L. Miller 5-14

Using Exponential Averaging

• Only the last burst counts
» Predict next burst is same length as previous burst
» k = 1

• Recent history doesn’t count
» Use same prediction every time, and never correct it
» k = 0

• In general, more recent bursts count more
» Value of older bursts “decays” over time
» Rate of decay depends on k
» Larger values of k mean faster decay

© 1999 by Ethan L. Miller 5-15

Priority Scheduling

• Each process is assigned a priority (integer)
• CPU runs the ready process with the highest priority

(smaller integers are higher priority)
• Can be done either

» Non-preemptive (highest priority runs until end of burst)
» Preemptive (check priorities when processes become ready)

• All algorithms are some form of priority scheduling
» SJF: priority = predicted CPU burst
» FCFS: priority = arrival time at CPU

• Starvation: low-priority processes may never complete
» Problem: high-priority processes keep low-priority ones from

finishing
» Solution: priority increases as process ages (waits)

© 1999 by Ethan L. Miller 5-16

Round Robin (RR)

• Each process gets a small amount of CPU time (called a
time quantum)
» Process preempted after its quantum is up
» Process then added to ready queue

• CPU time divided evenly between processes
» n processes in the ready queue
» Time quantum is q
» Each process gets 1/n of the CPU time in chunks of q time

units at a time
» Waiting time is at most (n-1)q time units

• Performance
» q is large -> FCFS
» q is small -> too much overhead doing context switches

© 1999 by Ethan L. Miller 5-17

Example: RR with Quantum 10

• Four processes:
» P1 has burst time 23

» P2 has burst time 17
» P3 has burst time 8
» P4 has burst time 34

• Higher average turnaround than SRTF, but better response time

1 1 1 1 1 1

2 2 2 2

3 3

4 4 4 4 4 4

0 10 20 30 40 50 60 70 80 90
Time

© 1999 by Ethan L. Miller 5-18

Multilevel Queuing

• Several different ready queues, for example
» Foreground (interactive) / background (batch)
» System tasks / user tasks

• Each queue has its own scheduling algorithm
» Foreground -> RR, background -> FCFS
» System tasks: SJF, user tasks -> RR

• Scheduling must be done between queues
» Fixed priority

– All processes in higher-priority queues have priority
– Processes in lower-priority queues can starve

» Time-slicing
– Time is shared between queues (possibly unevenly)
– Each queue can allocate its time to its own processes

© 1999 by Ethan L. Miller 5-19

Multilevel Feedback Queuing

• Processes may be moved from one queue to another
» Long-running processes get lower priority
» Processes that have been waiting a lot get higher priority

• Multilevel feedback queue scheduling:
» Number of queues
» Scheduling algorithm for each queue
» Movement algorithms for processes

– When does a process get upgraded?
– When does a process get downgraded?

» Method to decide which queue a process starts in

© 1999 by Ethan L. Miller 5-20

Multilevel Feedback Queue Example

• Three queues
» Q0: time quantum = 10 ms
» Q1 : time quantum = 50 ms
» Q2 : FCFS (may be preempted)

• Scheduling
» Processes enter Q0, where they get up to 50 ms
» If a process in Q0 doesn’t complete in 50 ms, it’s moved to Q1

» Processes in are given 500 ms to finish
» If a process in Q1 doesn’t complete in 500 ms, it’s moved to

Q2

» Processes in Q2 run in the order in which they were demoted
to Q2

» Processes in Q2 only use time unused by Q0 and Q1

© 1999 by Ethan L. Miller 5-21

Scheduling for Multiple CPUs

• Some systems have several CPUs that can be scheduled
as a group
» Similar to uniprocessor scheduling, but can run more than

one process at a time
» May be trickier issues: some processes may prefer a certain

CPU

• Issues to consider
» Goal: load sharing - utilize all processors evenly
» Homogenous multiprocessing: all CPUs are the same

– Some CPUs may be “closer” to the data they need to run
a particular process

» Asymmetric multiprocessing: processors have different jobs
(graphics processing / data processing)

© 1999 by Ethan L. Miller 5-22

Real-Time Scheduling

• Some processes have time constraints on their completion
time or progress

• Hard real-time systems
» Critical tasks must complete within a certain time
» Tasks that don’t complete within their allotted time are

useless
» Examples

– Medical systems
– Aircraft electronics

• Soft real-time systems
» Tasks must complete within a certain time to be useful
» Not fatal if all tasks don’t complete fast enough
» Example: video games

• Real-time scheduling may be combined other algorithms

© 1999 by Ethan L. Miller 5-23

Performance Evaluation of Schedulers

