
LIN Specification Package
Revision 2.0

September 23, 2003; Page 1

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
LIN
Specification Package

Revision 2.0

This specification is provided on an "AS IS" basis only and cannot be the basis for any 
claims. 

© LIN Consortium, 2003.  
All rights reserved. The unauthorized copying, displaying or other use of any content 
from this document is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®.

All distributions are registered.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 2

Revision history

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
1 REVISION HISTORY
Issue Date Remark

LIN 1.0 1999-07-01 Initial Version of the LIN Specification

LIN 1.1 2000-03-06

LIN 1.2 2000-11-17

LIN 1.3 2002-12-13

LIN 2.0 2003-09-16 Major Revision Step
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 3

LIN

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2 LIN
LIN (Local Interconnect Network) is a concept for low cost automotive networks, which 
complements the existing portfolio of automotive multiplex networks. LIN will be the 
enabling factor for the implementation of a hierarchical vehicle network in order to 
gain further quality enhancement and cost reduction of vehicles. The standardization 
will reduce the manifold of existing low-end multiplex solutions and will cut the cost of 
development, production, service, and logistics in vehicle electronics.

2.1 SCOPE
The LIN standard includes the specification of the transmission protocol, the transmis-
sion medium, the interface between development tools, and the interfaces for soft-
ware programming. LIN promotes the interoperability of network nodes from the 
viewpoint of hardware and software, and a predictable EMC behavior.

2.2 FEATURES AND POSSIBILITIES
The LIN is a serial communications protocol which efficiently supports the control of 
mechatronics nodes in distributed automotive applications.

The main properties of the LIN bus are:

• single master with multiple slaves concept

• low cost silicon implementation based on common UART/SCI interface 
hardware, an equivalent in software, or as pure state machine.

• self synchronization without a quartz or ceramics resonator in the slave nodes

• deterministic signal transmission with signal propagation time computable in 
advance

• low cost single-wire implementation

• speed up to 20 kbit/s.

• signal based application interaction

The intention of this specification is to achieve compatibility with any two LIN imple-
mentations with respect to the scope of the standard, i.e. from the application inter-
face, API, all the way down to the physical layer.

LIN provides a cost efficient bus communication where the bandwidth and versatility 
of CAN are not required. The specification of the line driver/receiver follows the ISO 
9141 standard [1] with some enhancements regarding the EMI behavior.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 4

LIN

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.3 WORK FLOW CONCEPT
The LIN workflow concept allows for the implementation of a seamless chain of 
design and development tools and it enhances the speed of development and the reli-
ability of the LIN cluster.

The LIN Configuration Language allows for safe sub-contracting of nodes without 
jeopardizing the LIN system functionality by e.g. message incompatibility or network 
overload. It is also a powerful tool for debugging of a LIN cluster, including emulation 
of non-finished nodes.

The LIN Node Capability Language, which is a new feature in LIN 2.0, provides a 
standardized syntax for specification of off-the-shelves slave nodes. This will simplify 
procurement of standard nodes as well as provide possibilities for tools that automate 
cluster generation. Thus, true Plug-and-Play with nodes in a cluster will become a 
reality.

An example of the intended workflow is depicted below:

The slave nodes are connected to the master forming a LIN cluster. The correspond-
ing node capability files are parsed by the system defining tool to generate a LIN 
description file (LDF) in the system definition process. The LDF is parsed by the Sys-
tem Generator to automatically generate LIN related functions in the desired nodes 
(the Master and Slave3 in the example shown in the picture above). The LDF is also 
used by a LIN bus analyzer/emulator tool to allow for cluster debugging.

LIN Description

System Defining 
Tool

Node Capability Files

File

LIN

System
Generator

Bus analyzer and 
emulator

Design

System Debugging

Slave1 Slave2 Slave3 Master
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 5

LIN

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.4 NODE CONCEPT
The workflow described above generates the complete LIN cluster interaction module 
and the developer only has to supply the application performing the logic function of a 
node. Although much of the LIN specifications assumes a software implementation of 
most functions, alternative realizations are promoted. In the latter case, the LIN docu-
mentation structure shall be seen as a description model only:

A node in a LIN cluster interfaces to the physical bus wire using a frame transceiver. 
The frames are not accessed directly by the application; a signal based interaction 
layer is added in between. As a complement, a diagnostic interface exist between the 
application and the frame handler, as depicted below.

2.5 CONCEPT OF OPERATION

2.5.1 Master and slave
A LIN cluster consists of one master task and several slave tasks. A master node1

contains the master task as well as a slave task. All other nodes contain a slave task 
only. A sample LIN cluster with one master node and two slave nodes is depicted 
below:

Note 1: A node may participate in more than one cluster. The term node relates to a single bus 
interface of a node if the node has multiple LIN bus interfaces.

Diagnostic Signal interaction

Application

LIN bus line

API

Protocol

Physical

Frame handler

LIN bus

slave task

master task

master node slave node slave node

slave task slave task
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 6

LIN

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
The master task decides when and which frame shall be transferred on the bus. The 
slave tasks provide the data transported by each frame.

Both the master task and the slave task are parts of the Frame handler, see 
Section 2.4.

2.5.2 Frames
A frame consists of a header (provided by the master task) and a response (provided 
by a slave task).

The header consists of a break and sync pattern followed by an identifier. The identi-
fier uniquely defines the purpose of the frame. The slave task appointed for providing 
the response associated with the identifier transmits it, as depicted below. The 
response consists of a data field and a checksum field.

The slave tasks interested in the data associated with the identifier receives the 
response, verifies the checksum and uses the data transported.

This results in the following desired features:

• System flexibility: Nodes can be added to the LIN cluster without requiring 
hardware or software changes in other slave nodes.

• Message routing: The content of a message is defined by the identifier2.

• Multicast: Any number of nodes can simultaneously receive and act upon a 
single frame.

2.5.3 Data transport
Two types of data may be transported in a frame; signals or diagnostic messages. 

Signals
Signals are scalar values or byte arrays that are packed into the data field of a frame. 
A signal is always present at the same position of the data field for all frames with the 
same identifier.

Note 2: This is similar to CAN

Master task

Slave task 1 Response

Header Header

ResponseSlave task 2
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 7

LIN

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Diagnostic messages
Diagnostic messages are transported in frames with two reserved identifiers. The 
interpretation of the data field depends on the data field itself as well as the state of 
the communicating nodes.

2.5.4 Schedule table
The master task (in the master node) transmits frame headers based on a schedule 
table. The schedule table specifies the identifiers for each header and the interval 
between the start of a frame and the start of the following frame. The master applica-
tion may use different schedule tables and select among them.

2.6 DOCUMENT OVERVIEW
The LIN Specification Package consists of the following specifications:

• The LIN Physical Layer Specification describes the physical layer, including 
bit rate, clock tolerances, etc.

• The LIN Protocol Specification describes the data link layer of LIN.

• The LIN Diagnostic and Configuration Specification describes the service 
that can be layered on top of the data link layer to provide for diagnostic 
messages and node configuration.

• The LIN API Specification describes the interface between the network and 
the application program, including the diagnostic module.

• The LIN Configuration Language Specification describes the format of the 
LIN description file, which is used to configure the complete network and 
serve as a common interface between the OEM and the suppliers of the 
different network nodes, as well as an input to development and analysis 
tools.

• The LIN Node Capability Language Specification describes a format used 
to describe off-the-shelf slave nodes that can be used with a Plug-and-Play 
tool to automatically create LIN description files.

2.7 HISTORY AND BACKGROUND
LIN revision 1.0 was released in July 1999 and it was heavily influenced by the VLITE 
bus used by some automotive companies. The LIN standard was updated twice in 
year 2000, resulting in LIN 1.2 in November 2000. In November 2002 the LIN Consor-
tium released the LIN 1.3 standard. Changes where mainly made in the physical layer 
and they where targeted at improving compatibility between nodes.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 8

LIN

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
The new LIN 2.0 represents an evolutionary growth from its predecessor, LIN 1.3. 
Nodes designed for LIN 2.0 and LIN 1.3 will communicate with each other with a few 
exceptions, as described in Section 2.7.1.

At the same time, the LIN 2.0 specification is completely reworked and areas where 
problems have been found are clarified and, when needed, reworked.

LIN 2.0 is an adjustment of the LIN specification to reflect the latest trends identified; 
especially the use of off-the-shelves slave nodes. Three years of experience with LIN 
and inputs from the SAE J2602 Task Force have contributed to this major revision. 
LIN 2.0 also incorporates new features, mainly standardized support for configuration/
diagnostics and specified node capability files, both targeted at simplifying use of off-
the-shelves slave nodes.

2.7.1 Compatibility with LIN 1.3
LIN 2.0 is a superset of LIN 1.3 and it is the recommended version for all new devel-
opments.

A LIN 2.0 master node can handle clusters consisting of both LIN 1.3 slaves and/or 
LIN 2.0 slaves. The master will then avoid requesting the new LIN 2.0 features from a 
LIN 1.3 slave:

• Enhanced checksum,

• Reconfiguration and diagnostics,

• Automatic baudrate detection,

• Response_error status monitoring.

A LIN 2.0 slave nodes can not operate with a LIN 1.3 master node (it needs to be con-
figured).
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 9

LIN

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.7.2 Changes between LIN 1.3 and LIN 2.0
The items listed below are changed between LIN 1.3 and LIN 2.0. Renamings and 
clarifications are not listed in this section.

• Byte array signals are supported, thus allowing signals sizes up to eight bytes.

• Signal groups are deleted (replaced by byte arrays).

• Automatic bit rate detection is incorporated in the specification.

• Enhanced checksum (including the protected identifier) as an improvement to 
the LIN 1.3 classic checksum.

• Sporadic frames are defined.

• Network management timing is defined in seconds, not in bit times.

• Status management is simplified and reporting to the network and the 
application is standardized.

• Mandatory node configuration commands are added, together with some 
optional commands.

• Diagnostics is added.

• A LIN Product Identification for each node is standardized.

• The API is made mandatory for micro controller based nodes programmed in
C.

• The API is changed to reflect the changes; byte array, go-to-sleep, wake up 
and status reading.

• A diagnostics API is added.

• A node capability language specification is added.

• The configuration language specification is updated to reflect the changes 
made; node attributes, node composition, byte arrays, sporadic frames and 
configuration are added.

2.8 REFERENCES

[1] “Road vehicles - Diagnostic systems - Requirement for interchange of digital 
information”, International Standard ISO9141, 1st Edition, 1989
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 10

LIN Glossary

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3 LIN GLOSSARY
The following terms are used in one or more of the LIN 2.0 Specification Package
documents. Each term is briefly described in the glossary and a reference to the main 
document and section is also given, abbreviated as:
PHY LIN Physical Layer Specification
PROT LIN Protocol Specification
DIAG LIN Diagnostic and Configuration Specification
CLS LIN Configuration Language Specification
API LIN API Specification
NCL LIN Node Capability Language Specification
active mode The nodes of the cluster communicate with each other as a 

cluster. [PROT 5]

bus interface The logic (transceiver, UART, etc.) of a node that is con-
nected to the physical bus wire in a cluster.

byte field Each byte on the LIN bus is sent in a byte field; the byte 
field includes the start bit and stop bit transmitted. 
[PROT 2.1]

checksum model Two checksum models are defined; classic checksum
and enhanced checksum, enhanced includes the pro-
tected identifier in the checksum, classic does not. 
[PROT 2.1.5]

classic checksum The checksum used in earlier LIN versions and for diag-
nostic frames: It is summed over the data bytes only.
[PROT 2.1.5]

cluster A cluster is the LIN bus wire plus all the nodes.

data The response of a LIN frame carries one to eight bytes of 
data, collectively called data. [PROT 2.1.4]

data byte One of the bytes in the data. [PROT 2.1.4]

diagnostic frame The master request frame and slave response frame
are called diagnostic frames. [PROT 2.3.4]

enhanced checksum A new checksum with slightly better performance: It 
includes the protected identifier in the sum, not only data 
bytes. The enhanced checksum is used for communica-
tion with LIN 2.0 slave nodes. [PROT 2.1.5]
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 11

LIN Glossary

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
event triggered frame An event triggered frame is used as a “placeholder” to 
allow multiple slave nodes to provide its response. This is 
useful when the signals involved are changed infrequently. 
[PROT 2.3.2]

frame All information is sent packed as frames; a frame consist of 
the header and a response. [PROT 2]

frame slot The time period reserved for the transfer of a specific 
frame on the LIN bus. Corresponds to one entry in the 
schedule table. [PROT 2.2]

go-to-sleep-command A special diagnostic frame issued to force slave nodes to 
sleep mode. [PROT 5.2] [API 2.5.4]

header A header is the first part of a frame; it is always sent by the 
master task. [PROT 2.1]

identifier The identity of a frame in the range 0 to 63. [PROT 2.1.3]

LIN Description File The LDF file is created in the system definition and 
parsed in the system generation or by debugging tools. 
[CLS] [NCL 1.1]

LIN Product Identification A unique number for each LIN node. [DIAG 2.4]

master node The master node not only contains a slave task, but also 
the master task that is responsible for sending all frame 
headers on the bus, i.e. it controls the timing and sched-
ule table for the bus.

master request frame The master request frame has identifier 60 and is used for 
diagnostic frames issued by the master node. 
[PROT 2.3.4] [DIAG]

master task The master task is responsible for sending all frame head-
ers on the bus, i.e. it controls the timing and schedule 
table for the bus. [PROT 4.1]

message identifier Each frame in a slave node has a unique 16 bit message 
number. During node configuration this number is associ-
ated with a protected identifier, which is then used in the 
normal communication with the node. [DIAG 2.5.1]

NAD Node Address for Diagnostic. Diagnostic frames are broad-
casted and the NAD specifies the addressed slave node. 
The NAD is both the physical address and the logical 
address. [DIAG 2.3.2]
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 12

LIN Glossary

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
node Loosely speaking, a node is an ECU (electronic control 
unit). However, a single ECU may be connected to multiple 
LIN clusters; in the latter case the term node should be 
replaced with bus interface.

Node Capability File A NCF file describes a slave node as seen from the LIN 
bus. It is used in the system definition. [NCL 1.1]

protected identifier The identifier (6 bit) together with its two parity bits. 
[PROT 2.1.3]

publish A signal (or an unconditional frame) have exactly one 
publisher; the node that is the source of the information, 
compare with subscribe. [PROT 2.1.4] [PROT 4.2]

request The master node puts request on the slave nodes in node 
configuration and in the diagnostic transport layer.
[DIAG 2.3.1] [DIAG 3.3.1]

reserved frame Reserved frames have an identifier that shall not be used: 
63 (0x3f). [PROT 2.3.6]

response (1) A LIN frame consists of a header and a response 
[PROT 2.1]. Also called a Frame response. 
(2) The reply message for an ISO request is a response 
[DIAG 2.3.1] [DIAG 3.3.1]. Also called a Diagnostic 
response.

schedule table The schedule table determines the traffic on the LIN bus. 
[PROT 3] [CLS 2.5] [API 2.4]

slave node A node that contains a slave task only, i.e. it does not con-
tain a master task.

slave response frame The slave response frame has identifier 61 and is used for 
diagnostic frames issued by one of the slave nodes. 
[PROT 2.3.4] [DIAG]

slave task The slave task is responsible for listening to all frame 
headers on the bus and react accordingly, i.e. either pub-
lish a frame response or subscribe to it (or ignore it). 
[PROT 4.2]

sleep mode No communication occurs in the cluster. [PROT 5]

signal A signal is a value transported in the LIN cluster using a 
signal-carrying frame. [PROT 1]
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 13

LIN Glossary

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
signal-carrying frame A frame that carries signals shall have an identifier in the 
range 0 to 59 (0x3b). Unconditional frames, sporadic 
frames and event triggered frames are signal-carrying 
frames [PROT 2.1.3].

sporadic frame A sporadic frame is a signal-carrying frame similar to 
unconditional frames, but only transferred in its frame 
slot if one of its signals is updated by the publisher. 
[PROT 2.3.3]

subscribe Subscribe is the opposite of publish, i.e. to receive a sig-
nal (or a signal-carrying frame). [PROT 2.1.4] 
[PROT 4.2]

system definition The process of creating the LIN Description File. 
[NCL 1.1.2]

system generation The process of targeting one (or multiple) of the nodes in 
the cluster to the LIN Description File. [NCL 1.1.1]

unconditional frame A signal-carrying frame that is always sent in its allocated 
frame slot. [PROT 2.3.1]

user-defined frame A frame with identifier 62. Its purpose or usage is not part 
of the LIN specification. [PROT 2.3.5]
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 14

Table of contents

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
TABLE OF CONTENTS

Specification Package
1 Revision history ..................................................................................2
2 LIN ......................................................................................................3
2.1 Scope .............................................................................................3
2.2 Features and possibilities ...............................................................3
2.3 Work flow concept ..........................................................................4
2.4 Node concept .................................................................................5
2.5 Concept of operation ......................................................................5
2.5.1 Master and slave ............................................................................5
2.5.2 Frames ...........................................................................................6
2.5.3 Data transport.................................................................................6
2.5.4 Schedule table................................................................................7
2.6 Document overview ........................................................................7
2.7 History and background..................................................................7
2.7.1 Compatibility with LIN 1.3 ...............................................................8
2.7.2 Changes between LIN 1.3 and LIN 2.0 ..........................................9
2.8 References .....................................................................................9
3 LIN Glossary .....................................................................................10

Table of contents ..............................................................................14

Protocol Specification
1 Signal Management ............................................................................2
1.1 Signal types ....................................................................................2
1.2 Signal consistency..........................................................................2
1.3 Signal packing ................................................................................2
2 Frame Transfer ...................................................................................3
2.1 Frame structure ..............................................................................3
2.1.1 Break ..............................................................................................4
2.1.2 Synch byte......................................................................................4
2.1.3 Protected identifier..........................................................................4
2.1.4 Data ................................................................................................5
2.1.5 Checksum.......................................................................................6
2.2 Frame slots.....................................................................................6
2.3 Frame types....................................................................................7
2.3.1 Unconditional frame........................................................................7
2.3.2 Event triggered frame .....................................................................7
2.3.3 Sporadic frame ...............................................................................9
2.3.4 Diagnostic frames.........................................................................10
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 15

Table of contents

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.3.5 User-defined frames .....................................................................10
2.3.6 Reserved frames ..........................................................................10
3 Schedules .........................................................................................11
3.1 Slot allocation ...............................................................................11
4 Task Behavior Model ........................................................................12
4.1 Master task state machine............................................................12
4.2 Slave task state machine..............................................................12
4.2.1 Break and synch detector.............................................................12
4.2.2 Frame processor ..........................................................................13
5 Network Management.......................................................................15
5.1 Wake up .......................................................................................15
5.2 Goto sleep ....................................................................................15
5.3 Power management .....................................................................16
6 Status Management..........................................................................17
6.1 Concept ........................................................................................17
6.2 Event triggered frames .................................................................17
6.3 Reporting to the network ..............................................................17
6.4 Reporting within own node ...........................................................18
7 Appendices .......................................................................................20
7.1 Table of numerical properties .......................................................20
7.2 Table of valid identifiers................................................................20
7.3 Example of checksum calculation ................................................22
7.4 Syntax and mathematical symbols used in this standard.............23

Diagnostic and Configuration Specification
1 Introduction .........................................................................................2
2 Node configuration..............................................................................3
2.1 Node model ....................................................................................3
2.2 Wildcards........................................................................................4
2.3 PDU structure .................................................................................4
2.3.1 Overview.........................................................................................4
2.3.2 NAD ................................................................................................5
2.3.3 PCI..................................................................................................5
2.3.4 SID..................................................................................................5
2.3.5 RSID ...............................................................................................6
2.3.6 D1 to D5 .........................................................................................6
2.4 LIN product identification ................................................................6
2.5 Mandatory requests........................................................................6
2.5.1 Assign frame identifier ....................................................................6
2.5.2 Read by identifier............................................................................7
2.6 Optional requests ...........................................................................9
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 16

Table of contents

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.6.1 Assign NAD ....................................................................................9
2.6.2 Conditional change NAD ................................................................9
2.6.3 Data dump ....................................................................................10
3 Diagnostics .......................................................................................11
3.1 Signal based diagnostics..............................................................11
3.2 User defined diagnostics ..............................................................11
3.3 Diagnostics transport layer ...........................................................11
3.3.1 PDU structure ...............................................................................12
3.3.2 Defined requests ..........................................................................14
3.3.3 ISO timing constraints ..................................................................14
3.3.4 Sequence diagrams......................................................................15
4 References .......................................................................................16

Physical Layer Specification
1 Oscillator Tolerance............................................................................2
2 Bit Timing Requirements and Synchronization Procedure .................3
2.1 Bit Timing Requirements ................................................................3
2.2 Synchronization Procedure ............................................................3
3 Line Driver/Receiver ...........................................................................4
3.1 General Configuration ....................................................................4
3.2 Definition of Supply Voltages for the Physical Interface .................4
3.3 Signal Specification ........................................................................5
3.4 Electrical DC parameters................................................................7
3.5 Electrical AC Parameters ...............................................................9
3.6 LINE Characteristics.....................................................................11
3.7 ESD/EMI Compliance...................................................................12

Application Program Interface Specification
1 Introduction .........................................................................................2
1.1 Concept of operation ......................................................................2
1.1.1 System generation..........................................................................2
1.1.2 API..................................................................................................2
2 Core API .............................................................................................4
2.1 Driver and cluster management .....................................................4
2.1.1 l_sys_init .........................................................................................4
2.2 Signal interaction ............................................................................4
2.2.1 Signal types ....................................................................................4
2.2.2 Scalar signal read...........................................................................5
2.2.3 Scalar signal write ..........................................................................5
2.2.4 Byte array read ...............................................................................5
2.2.5 Byte array write...............................................................................6
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 17

Table of contents

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.3 Notification......................................................................................6
2.3.1 l_flg_tst ...........................................................................................6
2.3.2 l_flg_clr ...........................................................................................7
2.4 Schedule management...................................................................7
2.4.1 l_sch_tick........................................................................................7
2.4.2 l_sch_set ........................................................................................8
2.5 Interface management....................................................................9
2.5.1 l_ifc_init...........................................................................................9
2.5.2 l_ifc_connect...................................................................................9
2.5.3 l_ifc_disconnect ..............................................................................9
2.5.4 l_ifc_goto_sleep............................................................................10
2.5.5 l_ifc_wake_up...............................................................................10
2.5.6 l_ifc_ioctl .......................................................................................11
2.5.7 l_ifc_rx ..........................................................................................11
2.5.8 l_ifc_tx ..........................................................................................12
2.5.9 l_ifc_aux .......................................................................................12
2.5.10 l_ifc_read_status ..........................................................................13
2.6 User provided call-outs.................................................................15
2.6.1 l_sys_irq_disable ..........................................................................15
2.6.2 l_sys_irq_restore ..........................................................................15
3 Node configuration............................................................................16
3.0.1 ld_is_ready ...................................................................................16
3.0.2 ld_check_response.......................................................................17
3.0.3 ld_assign_NAD.............................................................................17
3.0.4 ld_assign_frame_id ......................................................................18
3.0.5 ld_read_by_id ...............................................................................18
3.0.6 ld_conditional_change_NAD ........................................................19
4 Diagnostic transport layer .................................................................20
4.1 Raw API........................................................................................20
4.1.1 ld_put_raw ....................................................................................20
4.1.2 ld_get_raw ....................................................................................21
4.1.3 ld_raw_tx_status...........................................................................21
4.1.4 ld_raw_rx_status ..........................................................................22
4.2 Cooked API ..................................................................................22
4.2.1 ld_send_message ........................................................................22
4.2.2 ld_receive_message.....................................................................23
4.2.3 ld_tx_status ..................................................................................23
4.2.4 ld_rx_status ..................................................................................24
5 Examples ..........................................................................................25
5.1 LIN core API usage ......................................................................25
5.2 LIN description file ........................................................................27
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 18

Table of contents

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Node Capability Language Specification
1 Introduction .........................................................................................2
1.1 Plug and play workflow...................................................................2
1.1.1 System Generation.........................................................................2
1.1.2 System Definition............................................................................3
1.1.3 Debugging ......................................................................................3
2 Node capability file definition ..............................................................4
2.1 Global definition..............................................................................4
2.1.1 Node capability language version number definition ......................4
2.2 Node definition................................................................................4
2.3 General definition ...........................................................................4
2.3.1 LIN protocol version number definition ...........................................5
2.3.2 LIN Product Identification ...............................................................5
2.3.3 Bit rate ............................................................................................5
2.3.4 Non-network parameters ................................................................5
2.4 Diagnostic definition .......................................................................5
2.5 Frame definition..............................................................................6
2.5.1 Frame properties ............................................................................7
2.5.2 Signal definition ..............................................................................7
2.5.3 Signal encoding type definition.......................................................8
2.6 Status management .......................................................................8
2.7 Free text definition ..........................................................................9
3 Overview of Syntax...........................................................................10
4 Example file ......................................................................................11

Configuration Language Specification
1 Introduction .........................................................................................2
2 LIN description file definition...............................................................3
2.1 Global definition..............................................................................3
2.1.1 LIN protocol version number definition ...........................................3
2.1.2 LIN language version number definition .........................................3
2.1.3 LIN speed definition........................................................................3
2.2 Node definition................................................................................3
2.2.1 Participating nodes .........................................................................4
2.2.2 Node attributes ...............................................................................4
2.2.3 Node composition definition ...........................................................5
2.3 Signal definition ..............................................................................6
2.3.1 Standard signals.............................................................................6
2.3.2 Diagnostic signals...........................................................................6
2.3.3 Signal groups..................................................................................7
2.4 Frame definition..............................................................................7
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Specification Package
Revision 2.0

September 23, 2003; Page 19

Table of contents

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.4.1 Dynamic frame ids..........................................................................7
2.4.2 Unconditional frames......................................................................7
2.4.3 Sporadic frames .............................................................................9
2.4.4 Event triggered frames ...................................................................9
2.4.5 Diagnostic frames.........................................................................10
2.5 Schedule table definition ..............................................................11
2.6 Additional information ...................................................................13
2.6.1 Signal encoding type definition.....................................................13
2.6.2 Signal representation definition ....................................................15
3 Overview of Syntax...........................................................................16
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 1

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
LIN
Protocol Specification

Revision 2.0

This specification is provided on an "AS IS" basis only and cannot be the basis for any 
claims. 

© LIN Consortium, 2003.  
All rights reserved. The unauthorized copying, displaying or other use of any content 
from this document is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®.

All distributions are registered.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 2

Signal Management

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
1 SIGNAL MANAGEMENT
A signal is transported in the data field of a frame. Several signals can be packed into 
one frame as long as they do not overlap each other.

Each signal has exactly one producer, i.e. it is always written by the same node in the 
cluster. Zero, one or multiple nodes may subscribe to the signal.

1.1 SIGNAL TYPES
A signal is either a scalar value or a byte array.

A scalar signal is between 1 and 16 bits long. A one bit scalar signal is called a bool-
ean signal. Scalar signals in the size of 2 to 16 bits are treated as unsigned integers. 
Any interpretation outside of this, i.e. offsetting and scaling is out of scope.

A byte array is an array of between one and eight bytes. Interpretation of the byte 
array is out of scope for the LIN specification. Especially, this applies to the byte endi-
anness when representing entities larger than a byte with a byte array.

1.2 SIGNAL CONSISTENCY
Scalar signal writing or reading must be atomic operations, i.e. it should never be pos-
sible for an application to receive a signal value that is partly updated. However, no
consistency is given between signals or between the individual bytes in a byte array.

1.3 SIGNAL PACKING
A signal is transmitted with the LSB first and the MSB last. The only additional rule for 
scalar signal packing within a frame is that maximum one byte boundary may be 
crossed by a scalar signal1. Each byte in a byte array shall map to a single frame byte 
starting with the lowest numbered data byte (Section 2.1.4).

Note 1: Signal packing/unpacking is implemented more efficient in software based nodes if sig-
nals are byte aligned and/or if they do not cross byte boundaries.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 3

Frame Transfer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2 FRAME TRANSFER
The entities that are transferred on the LIN bus are frames.

The time it takes to send a frame is the sum of the time to send each byte plus the 
response space and the inter-byte space. The inter-byte space is the period between 
the end of the stop bit of the preceding byte and the start bit of the following byte. Both 
of them must be non-negative.

The inter-frame space is the time from the end of the frame until start of the next 
frame. The inter-frame space must also be non-negative.

2.1 FRAME STRUCTURE
The structure of a frame is shown in Figure 2.1. The frame is constructed of a break 
followed by four to eleven byte fields, labeled as in the figure.

Figure 2.1: The structure of a LIN frame.

Each byte field2 is transmitted as a serial byte, as shown in Figure 2.2. The LSB of 
the data is sent first and the MSB last. The start bit is encoded as a bit with value zero 
(dominant) and the stop bit is encoded as a bit with value one (recessive).

Figure 2.2: Structure of a byte field.

Note 2: Except the break byte field, see Section 2.1.1.

Frame

Header Response
Response 

space

Inter-
frame 
space

Break Synch Protected Data 1 Data 2 Data N Checksum
identifier

Frame slot

Byte field

LSB 
(bit 0)

MSB 
(bit 7)

Start 
bit

Stop 
bit
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 4

Frame Transfer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.1.1 Break
The break symbol is used to signal the beginning of a new frame. It is the only field 
that does not comply with Figure 2.2: A break is always generated by the master task 
(in the master node) and it shall be at least 13 bits of dominant value, including the 
start bit, followed by a break delimiter, as shown in Figure 2.3. The break delimiter 
shall be at least one nominal bit time long.

A slave node shall use a break detection threshold of 11 nominal bit times3.

Figure 2.3: The break field.

2.1.2 Synch byte
Synch is a byte field with the data value 0x55, as shown in Figure 2.4.

Figure 2.4: The synch byte field.

A slave task shall always be able to detect the break/synch symbol sequence, even if 
it expects a byte field (assuming the byte fields are separated from each other4). If this 
happens, detection of the break/synch sequence shall abort the transfer in progress5

and processing of the new frame shall commence.

2.1.3 Protected identifier
A protected identifier consists of two sub-fields; the identifier and the identifier parity. 
Bit 0 to 5 is the identifier and bit 6 and 7 is the parity.

Note 3: Slave nodes with a clock tolerance better than FTOL_SYNCH, see LIN Physical Layer 
Table 1.2 (typically a crystal or ceramic resonator) may use a 9.5 bit break detection threshold.

Note 4: A desired, but not required, feature is to detect the break/sync sequence even if the break 
is partially superimposed with a data byte.

Note 5: Response_error and error in response shall be set assuming the frame is processed by 
the node, see Section 5.

Start 
bit

Break 
delimit

Start 
bit

Stop 
bit
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 5

Frame Transfer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Identifier
Six bits are reserved for the identifier (ID), values in the range 0 to 63 can be used. 
The identifiers are split in four categories:

• Values 0 to 59 (0x3b) are used for signal-carrying frames,
• 60 (0x3c) and 61 (0x3d) are used to carry diagnostic data,
• 62 (0x3e) is reserved for user-defined extensions,
• 63 (0x3f) is reserved for future protocol enhancements.

Parity
The parity is calculated on the identifier bits as shown in equations (1) and (2):

P0 = ID0 ⊕ ID1 ⊕ ID2 ⊕ ID4 (1)
P1 = ¬ (ID1 ⊕ ID3 ⊕ ID4 ⊕ ID5) (2)

Mapping
The mapping of the bits (ID0 to ID5 and P0 and P1) is shown in Figure 2.5.

Figure 2.5: Mapping of identifier and parity to the protected identifier byte field.

2.1.4 Data
A frame carries between one and eight bytes of data. The number of bytes contained 
in a frame with a specific identifier shall be agreed by the publisher and all subscrib-
ers. A data byte is transmitted in a byte field, see Figure 2.2.

For data entities longer than one byte, the entity LSB is contained in the byte sent first 
and the entity MSB in the byte sent last (little-endian). The data fields are labeled data 
1, data 2,... up to maximum data 8, see Figure 2.6.

Figure 2.6: Numbering of the data bytes in a frame with eight data bytes.

Start 
bit

Stop 
bitID0 ID1 ID2 ID3 ID4 ID5 P0 P1

Data 1 Data 2 Data 4 Data 5 Data 6 Data 7 Data 8Data 3
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 6

Frame Transfer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.1.5 Checksum
The last field of a frame is the checksum. The checksum contains the inverted eight 
bit sum with carry6 over all data bytes or all data bytes and the protected identifier. 
Checksum calculation over the data bytes only is called classic checksum and it is 
used for communication with LIN 1.3 slaves.

Checksum calculation over the data bytes and the protected identifier byte is called 
enhanced checksum and it is used for communication with LIN 2.0 slaves.

The checksum is transmitted in a byte field, see Figure 2.2.

Use of classic or enhanced checksum is managed by the master node and it is deter-
mined per frame identifier; classic in communication with LIN 1.3 slave nodes and 
enhanced in communication with LIN 2.0 slave nodes.

Identifiers 60 (0x3c) to 63 (0x3f) shall always use classic checksum.

2.2 FRAME SLOTS
Each scheduled frame allocates a slot on the bus. The duration of a slot must be long 
enough to carry the frame even in the worst case.

The nominal value for transmission of a frame exactly matches the number of bits 
sent, i.e. no response space, no byte spaces and no inter-frame space. Therefore:

THeader_Nominal = 34 * TBit (3)
TResponse_Nominal = 10 * (NData + 1) * TBit (4)
TFrame_Nominal = THeader_Nominal + TResponse_Nominal (5)

where TBit is the nominal time required to transmit a bit, as defined in LIN Physical 
Layer.
The maximum space between the bytes is an additional 40% duration compared to 
the nominal transmission time. The additional duration is split between the frame 
header (the master task) and the frame response (a slave task). This yields:

THeader_Maximum = 1.4 * THeader_Nominal (6)
TResponse_Maximum = 1.4 * TResponse_Nominal (7)
TFrame_Maximum = THeader_Maximum + TResponse_Maximum (8)

Each frame slot shall be longer than or equal to TFrame_Maximum for the frame speci-
fied.

Note 6: Eight bit sum with carry equivalent to sum all values and subtract 255 every time the sum 
is greater or equal to 256 (which is not the same as modulo-255 or modulo-256).
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 7

Frame Transfer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Notes
All subscribing nodes shall be able to receive a frame that has a zero overhead, i.e. 
that is TFrame_Nominal long.

The THeader_Maximum puts a requirement on the maximum length of the break symbol.

2.3 FRAME TYPES
The frame type refers to the pre-conditions that shall be valid to transmit the frame. 
Some of the frame types are only used for specific purposes, which will also be 
defined in the following subsections. Note that a node or a cluster does not have to 
support all frame types specified in this section.

All bits not used/defined in a frame shall be be recessive (ones).

2.3.1 Unconditional frame
Unconditional frames always carry signals and their identifiers are in the range 0 to 59 
(0x3b).

The header of an unconditional frame is always transmitted when a frame slot allo-
cated to the unconditional frame is processed (by the master task). The publisher of 
the unconditional frame (slave task) shall always provide the response to the header. 
All subscribers of the unconditional frame shall receive the frame and make it avail-
able to the application (assuming no errors were detected).

Figure 2.7 shows a sequence of three unconditional frames.

Figure 2.7: Three unconditional frame transfers. A transfer is always initiated by the 
master. It has a single publisher and one or multiple subscribers.

2.3.2 Event triggered frame
The purpose of an event triggered frame is to increase the responsitivity of the LIN 
cluster without assigning too much of the bus bandwidth to the polling of multiple slave 
nodes with seldom occurring events.

Master Slave 2

ID=0x30

Master sends a frame to both slaves

Slave 1

ID=0x31

Master requests a frame from Slave 1

Slave 2 sends a frame to Slave 1ID=0x32
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 8

Frame Transfer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Event triggered frames carry the data field of one or more unconditional frames and 
the identifier of an event triggered frame shall be in the range 0 to 59 (0x3b). The first 
data byte of the carried unconditional frame shall be equal to its protected identifier. 
This implies that, at maximum, seven bytes of signals can be carried.

If more than one unconditional frame is associated with one event triggered frame 
(which is the normal case) they shall all be of equal length, use the same checksum 
model (i.e. mixing LIN 1.3 and LIN 2.0 frames is incorrect) and, furthermore, they shall 
all be published by different slave tasks.

The header of an event triggered frame is normally transmitted (the conditions are 
explained below) when a frame slot allocated to the event triggered frame is pro-
cessed. The publisher of an associated unconditional frame shall only provide the 
response to the header if one of the signals carried by its frame is updated.

If none of the slave tasks respond to the header, the rest of the frame slot is silent and 
the header is ignored.

If more than one slave task responds to the header in the same frame slot, a collision 
will occur. The master has to resolve the collision by requesting all associated uncon-
ditional frames before requesting the event-triggered frame again.

If one of the colliding slave nodes withdraws without corrupting the transfer, the mas-
ter will not detect this. A slave must therefore retry sending its response until success-
ful, or the response would be lost.

All subscribers of the event triggered frame shall receive the frame and use its data (if 
the checksum is validated) as if the associated unconditional frame was received.

Figure 2.8 is an example of an event triggered frame sequence.

Figure 2.8: ID 0x10 is an event triggered frame associated with the unconditional 
frames 0x11 and 0x12. Between each of the five frame slots in the figure, other 

frames may be transferred, defined by the schedule table.

Master Slave 2

ID=0x10

The most prioritized associated frame is requested

None of the slaves have any new response to send

Slave 1

ID=0x12

Request for event triggered frame causes a collision

The least prioritized frame is requested

ID=0x10

ID=0x11

ID=0x10 One of the slaves have a new response
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 9

Frame Transfer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Example
A typical use for the event triggered frame is to monitor the door knobs in a four door 
central locking system. By using an event triggered frame to poll all four doors the sys-
tem shows good response times, while still minimizing the bus load. In the rare occa-
sion that multiple passengers presses a knob each, the system will not loose any of 
the pushes, but it will take some additional time.

Note
If the enhanced checksum is used for an event triggered frame, it is the protected 
identifier in the transferred header that shall be used in the checksum calculation.

2.3.3 Sporadic frame
The purpose of sporadic frames is to blend some dynamic behavior into the determin-
istic and real-time focused schedule table without loosing the determinism in the rest 
of the schedule table. 

Sporadic frames always carry signals and their identifiers are in the range 0 to 59 
(0x3b).

The header of a sporadic frame shall only be sent in its associated frame slot when 
the master task knows that a signal carried in the frame has been updated. The pub-
lisher of the sporadic frame shall always provide the response to the header. All sub-
scribers of the sporadic frame shall receive the frame and use its data (if the 
checksum is validated).

If multiple sporadic frames are associated with the same frame slot (the normal case), 
the most prioritized7 of the sporadic frames (which has an updated signal) shall be 
transferred in the frame slot. If none of the sporadic frames associated with a frame 
slot has an updated signal the frame slot shall be silent.

The requirement that the master task shall know that a carried signal has been 
updated makes the master node the normal publisher of sporadic frames. After a colli-
sion in an event triggered frame however, the master task is also aware of the associ-
ated unconditional frames.

Figure 2.9 is an example of an sporadic frame sequence.

Note 7: See LIN Configuration Language Specification, Section 2.4.3.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 10

Frame Transfer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Figure 2.9: Normally sporadic frame slots are empty. In the second slot in the figure, 
one of the associated frames (0x22) is updated. Between the frame slots in the figure, 

other frames may be transferred, defined by the schedule table.

2.3.4 Diagnostic frames
Diagnostic frames always carry diagnostic or configuration data and they always con-
tain eight data bytes. The identifier is either 60 (0x3c), called master request frame, or 
61 (0x3d), called slave response frame. The interpretation of the data is given in LIN 
Diagnostic and Configuration Specification.

Before generating the header of a diagnostic frame, the master task queries its diag-
nostic module if it shall be sent or if the bus shall be silent. The slave tasks publish 
and subscribe to the response according to their diagnostic modules.

2.3.5 User-defined frames
User-defined frames carry any kind of information. Their identifier is 62 (0x3e). The 
header of a user-defined frame is always transmitted when a frame slot allocated to 
the frame is processed.

2.3.6 Reserved frames
Reserved frames shall not be used in a LIN 2.0 cluster. Their identifier is 63 (0x3f).

Master Slave

The associated frame 0x22 has an updated signal andID=0x22

Master has nothing to send

is sent by the master

Something happens that
update a signal in frame 
0x22
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 11

Schedules

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3 SCHEDULES
A key property of the LIN protocol is the use of schedule tables. Schedule table makes 
it possible to assure that the bus will never be overloaded. They are also the key com-
ponent to guarantee the periodicy of signals.

Deterministic behavior is made possible by the fact that all transfers in a LIN cluster 
are initiated by the master task. It is the responsibility of the master to assure that all 
frames relevant in a mode of operation are given enough time to be transferred.

3.1 SLOT ALLOCATION
This section identifies all requirements that a schedule table shall adhere. The ratio-
nale for most of the requirements are to provide a conflict-free standard or to provide 
for a simple an efficient implementation of the LIN protocol.

An unconditional frame associated with a sporadic frame or an event triggered frame 
may not be allocated in the same schedule table as the sporadic frame or the event 
triggered frame.

A frame slot must have a duration long enough to allow for the jitter introduced by the 
master task and the TFrame_Maximum defined in equation (8). As noted just after the 
equation, TFrame_Maximum may be reduced if the publisher supports it.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 12

Task Behavior 
Model

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
4 TASK BEHAVIOR MODEL
This chapter defines a behavior model for a LIN node. The behavior model is based 
on the master task/slave task concept. It is not necessary to implement a master node 
with three independent state machines or a slave node with two independent state 
machines, they may very well be merged into one block per node.

4.1 MASTER TASK STATE MACHINE
The master task is responsible for generating correct headers, i.e. deciding which 
frame shall be sent and for maintaining the correct timing between frames, all accord-
ing to the schedule table. The master task state machine is depicted in Figure 4.1.

Figure 4.1: Complete state machine for the master task.

The depicted state machine does not describe how selection of identifiers for the iden-
tifier field shall be chosen.

Note
Monitoring of errors in the master task state machine is not required. Errors that might 
occur, e.g. a dominant bit detected when a recessive bit is sent will cause the slaves 
to ignore the header.

4.2 SLAVE TASK STATE MACHINE
The slave task is responsible for transmitting the frame response when it is the pub-
lisher and for receiving the frame response when it is a subscriber. The slave task is 
modelled with two state machines:

• Break and synch detector
• Frame processor

4.2.1 Break and synch detector
A slave task is required to be synchronized at the beginning of the protected identifier 
field of a frame, i.e. it must be able to receive the protected identifier field correctly. It 
must stay synchronized within the required bit-rate tolerance throughout the remain-

Wait until next 
frame slot

Send break Send synch Send protected 
identifier

Unconditional frame or transmit condition fulfilled

Transmit condition not fulfilled
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 13

Task Behavior 
Model

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
der of the frame, as specified in Section 1 in LIN Physical Layer Specification. For 
this purpose every frame starts with a sequence starting with break field followed by a 
synch byte field. This sequence is unique in the whole LIN communication and pro-
vides enough information for any slave task to detect the beginning of a new frame 
and be synchronized at the start of the identifier field. 

4.2.2 Frame processor
Frame processing consists of two states, Dormant and Active. Active contains five 
sub-states. As soon as BreakAndSynch is signalled the Active state is entered in the 
Receive Identifier sub-state. This implies that processing of one frame will be aborted 
by the detection of a new break and synch sequence. The frame processor state 
machine is depicted in Figure 4.2.
c

Figure 4.2: Frame processor state machine.

Error and Success refers to the status management described in Section 6. 

Dormant

Receive pro-
tected identifier

Transmit data 
byte

Transmit check-
sum byte

Receive data 
byte

Receive check-
sum byte

Active

BreakAndSynch signalled
BreakAndSynch signalled/Error

Unknown id+parity or Tx/Rx 

Readback ≠ sent/Error

Last data transmittedMore

More Last data received

Id+parity ∈ TxId+parity ∈ Rx

Framing error/Error

Always/If checksum valid then keep

Always/If readback = sent

frame and set Success else Error

then Success else Error

condition not fulfilled
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 14

Task Behavior 
Model

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
A mismatch between readback and sent data shall be detected not later than after 
completion of the byte field containing the mismatch. When a mismatch is detected, 
the transmission shall be aborted.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 15

Network 
Management

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
5 NETWORK MANAGEMENT
Network management in a LIN cluster refers to cluster wake up and goto sleep only. 
Other network management features, e.g. configuration detection and limp home 
management are left to the application.

5.1 WAKE UP
Any node in a sleeping LIN cluster may request a wake up8. The wake-up request is 
issued by forcing the bus to the dominant state for 250 µs to 5 ms. 

Every slave node (connected to power) shall detect the wake-up request (a dominant 
pulse longer than 150 µs9) and be ready to listen to bus commands within 100 ms, 
measured from the ending edge of the dominant pulse. The master shall also wake up 
and, when the slave nodes are ready10, start sending frame headers to find out the 
cause of the wake up.

If the master does not issue frame headers within 150 ms from the wake up request, 
the node issuing the request may try issuing a new wake up request. After three (fail-
ing) requests the node shall wait minimum 1.5 seconds before issuing a fourth wake 
up request.

5.2 GOTO SLEEP
All slave nodes in an active cluster can be forced into sleep mode11 by sending a 
diagnostic master request frame (frame identifier = 0x3c) with the first data byte equal 
to zero12. This special use of a diagnostic frame is called a go-to-sleep-command.

Slave nodes shall also automatically enter a sleep mode if the LIN bus is inactive13 for 
more than 4 seconds.

Note 8: The master may issue a break symbol, e.g. by issuing an ordinary frame header since the 
break will act as a wake up pulse.

Note 9: A detection threshold of 150 µs combined with a 250 µs pulse generation gives a detection 
margin that is enough for uncalibrated slave nodes.

Note 10: This may take 100 ms (from the wake up) unless the master has additional information, 
e.g. only one slave in the cluster may be the cause of the wake up. Obviously, this slave is 
immediately ready to communicate.

Note 11: Sleep covers the cluster only, the application in the node may still be active.
Note 12: The first data byte is normally interpreted as the node address, NAD, and the address 

zero is not allowed.
Note 13: Inactive is defined as: No transitions between recessive and dominant bit values occur.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 16

Network 
Management

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
5.3 POWER MANAGEMENT
The state diagram in Figure 5.1 shows the behavior model for power management of 
a LIN node. The LIN protocol behavior specified in this document only applies to the 
Operational state.

Figure 5.1: LIN node power management.

Stand-by Wake up

Power on

Power off

Initializing 
(<100 ms)

Goto sleep

Power offPower off

Power offPower offPower off

Operational
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 17

Status Management

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
6 STATUS MANAGEMENT
The purpose of status management is to detect errors during operation. The purpose 
of detecting errors is twofold;

• to provide means to easily replace faulty units and
• to provide for nodes to enter a limp home mode when problems occur.

In addition to the status management function mandated in this chapter, a node may 
provide further detailed error information, although this is not standardized by the 
specification.

6.1 CONCEPT
Central cluster status management is made in the master node. The master node 
monitors status reports from each node and filters/integrates the reports to conclude if 
one or more nodes are faulty.

Each node application may also monitor its interaction with the LIN bus. This can be 
used to enter a limp home mode, if applicable.

6.2 EVENT TRIGGERED FRAMES
Event triggered frames, Section 2.3.2, are defined to allow collisions. Therefore, a bus 
error, e.g. framing error, shall not affect the status bits (it is neither a successful trans-
fer, nor an error in response). Of course, if an error in the associated unconditional 
frame occurs, this shall be counted as an error.

6.3 REPORTING TO THE NETWORK
Reporting to the network is intended for processing by the master node and is used to 
monitor the cluster. Only slave nodes are required to report their status to the network.

Each slave shall send one status bit signal, Response_Error, to the master node in 
one of its transmitted frames. Response_Error shall be set whenever a frame received 
by the node or a frame transmitted by the node contains an error in the response field. 
Response_Error shall be cleared after transmission.

Based on this single bit the master node can conclude the following:

Response_Error = False the node is operating correctly

Response_Error = True the node has intermittent problems

the node did not answer the node (or bus or master) has serious problems.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 18

Status Management

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Since the master node also receives information from the fact that a frame is not sent, 
it comes that the Response_Error status bit can not be placed in an event triggered 
frame. Apart from this restriction, any frame transmitted by the node can be used to 
carry the Response_Error status bit.

It is the responsibility of the master node application to integrate and filter the individ-
ual status reports as well as to do a synthesis of the reports from different slave 
nodes14.

Note
The response_error is enough to perform a conformance test of the frame transceiver 
(the protocol engine) independent of the application and the signal interaction layer.

A slave node may provide more status information, if desired, but the single 
response_error bit shall always be present.

6.4 REPORTING WITHIN OWN NODE
This section applies to software based nodes, however ASIC based state machine
implementations are recommended to use the same concepts.

The node provides two status bits for status management within the own node;
error_in_response and successful_transfer. The own node application also receives 
the protected identifier of the last frame recognized by the node.

Error_in_response is set whenever a frame received by the node or a frame 
transmitted by the node contains an error in the response field, i.e. by the 
same condition as will set the Response_Error signal.

Successful_transfer shall be set when a frame has been successfully trans-
ferred by the node, i.e. a frame has either been received or transmitted.

Both status bits are cleared after reading.

The two status bits can be interpreted according to Table 6.1.

Note 14: For example, if multiple nodes do not answer, the master may conclude that he is the 
faulty node, not all the slaves.

Table 6.1: Node internal error interpretation.
error in 

response
successful 

transfer Interpretation

0 0 No communication

1 1 Intermittent communication
(some successful transfers and some failed)

0 1 Full communication
1 0 Erroneous communication (only failed transfers)
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 19

Status Management

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
It is the responsibility of the node application to integrate and filter the individual status 
reports.

Note
The reporting within the own node is standardized in the LIN API Specification and 
can be used to automatically generate applications that perform an automatic con-
formance test of the complete LIN driver module, including the signal interaction layer.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 20

Appendices

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
7 APPENDICES
7.1 TABLE OF NUMERICAL PROPERTIES

7.2 TABLE OF VALID IDENTIFIERS

Table 7.1: Defined numerical properties
Property Min Max Unit Reference Remark

Scalar signal size 1 16 bit Section 1.1
Byte array size 1 8 byte Section 1.1
Break length 13 Tbit Section 2.1.1

Break detect threshold 11 11 Tbit Section 2.1.1 See also footnote 3
Wake up request duration 0.25 5 ms Section 5.1

Slave initialize time 100 ms Section 5.1
Silence period between wake-up requests 150 ms Section 5.1

Silence period after three wake-ups 1.5 s Section 5.1

ID[0..5]
Dec  Hex

P0 =
ID0⊕ID1⊕ID2⊕ID4

P1 = ¬
ID1⊕ID3⊕ID4⊕ID5

ID-Field
7 6 5 4  3 2 1 0

ID-Field
Dec   Hex

0 0x00 0 1 1 0 0 0  0 0 0 0 128 0x80

1 0x01 1 1 1 1 0 0  0 0 0 1 193 0xC1

2 0x02 1 0 0 1 0 0  0 0 1 0 66 0x42

3 0x03 0 0 0 0 0 0  0 0 1 1 3 0x03

4 0x04 1 1 1 1 0 0  0 1 0 0 196 0xC4

5 0x05 0 1 1 0 0 0  0 1 0 1 133 0x85

6 0x06 0 0 0 0 0 0  0 1 1 0 6 0x06

7 0x07 1 0 0 1 0 0  0 1 1 1 71 0x47

8 0x08 0 0 0 0 0 0  1 0 0 0 8 0x08

9 0x09 1 0 0 1 0 0  1 0 0 1 73 0x49

10 0x0A 1 1 1 1 0 0  1 0 1 0 202 0xCA

11 0x0B 0 1 1 0 0 0  1 0 1 1 139 0x8B

12 0x0C 1 0 0 1 0 0  1 1 0 0 76 0x4C

13 0x0D 0 0 0 0 0 0  1 1 0 1 13 0x0D

14 0x0E 0 1 1 0 0 0  1 1 1 0 142 0x8E

15 0x0F 1 1 1 1 0 0  1 1 1 1 207 0xCF

16 0x10 1 0 0 1 0 1  0 0 0 0 80 0x50

17 0x11 0 0 0 0 0 1  0 0 0 1 17 0x11

18 0x12 0 1 1 0 0 1  0 0 1 0 146 0x92

19 0x13 1 1 1 1 0 1  0 0 1 1 211 0xD3

20 0x14 0 0 0 0 0 1  0 1 0 0 20 0x14

21 0x15 1 0 0 1 0 1  0 1 0 1 85 0x55
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 21

Appendices

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
22 0x16 1 1 1 1 0 1  0 1 1 0 214 0xD6

23 0x17 0 1 1 0 0 1  0 1 1 1 151 0x97

24 0x18 1 1 1 1 0 1  1 0 0 0 216 0xD8

25 0x19 0 1 1 0 0 1  1 0 0 1 153 0x99

26 0x1A 0 0 0 0 0 1  1 0 1 0 26 0x1A

27 0x1B 1 0 0 1 0 1  1 0 1 1 91 0x5B

28 0x1C 0 1 1 0 0 1  1 1 0 0 156 0x9C

29 0x1D 1 1 1 1 0 1  1 1 0 1 221 0xDD

30 0x1E 1 0 0 1 0 1  1 1 1 0 94 0x5E

31 0x1F 0 0 0 0 0 1  1 1 1 1 31 0x1F

32 0x20 0 0 0 0 1 0  0 0 0 0 32 0x20

33 0x21 1 0 0 1 1 0  0 0 0 1 97 0x61

34 0x22 1 1 1 1 1 0  0 0 1 0 226 0xE2

35 0x23 0 1 1 0 1 0  0 0 1 1 163 0xA3

36 0x24 1 0 0 1 1 0  0 1 0 0 100 0x64

37 0x25 0 0 0 0 1 0  0 1 0 1 37 0x25

38 0x26 0 1 1 0 1 0  0 1 1 0 166 0xA6

39 0x27 1 1 1 1 1 0  0 1 1 1 231 0xE7

40 0x28 0 1 1 0 1 0  1 0 0 0 168 0xA8

41 0x29 1 1 1 1 1 0  1 0 0 1 233 0xE9

42 0x2A 1 0 0 1 1 0  1 0 1 0 106 0x6A

43 0x2B 0 0 0 0 1 0  1 0 1 1 43 0x2B

44 0x2C 1 1 1 1 1 0  1 1 0 0 236 0xEC

45 0x2D 0 1 1 0 1 0  1 1 0 1 173 0xAD

46 0x2E 0 0 0 0 1 0  1 1 1 0 46 0x2E

47 0x2F 1 0 0 1 1 0  1 1 1 1 111 0x6F

48 0x30 1 1 1 1 1 1  0 0 0 0 240 0xF0

49 0x31 0 1 1 0 1 1  0 0 0 1 177 0xB1

50 0x32 0 0 0 0 1 1  0 0 1 0 50 0x32

51 0x33 1 0 0 1 1 1  0 0 1 1 115 0x73

52 0x34 0 1 1 0 1 1  0 1 0 0 180 0xB4

53 0x35 1 1 1 1 1 1  0 1 0 1 245 0xF5

54 0x36 1 0 0 1 1 1  0 1 1 0 118 0x76

55 0x37 0 0 0 0 1 1  0 1 1 1 55 0x37

56 0x38 1 0 0 1 1 1  1 0 0 0 120 0x78

57 0x39 0 0 0 0 1 1  1 0 0 1 57 0x39

58 0x3A 0 1 1 0 1 1  1 0 1 0 186 0xBA

59 0x3B 1 1 1 1 1 1  1 0 1 1 251 0xFB

60a 0x3C 0 0 0 0 1 1  1 1 0 0 60 0x3C

61b 0x3D 1 0 0 1 1 1  1 1 0 1 125 0x7D

ID[0..5]
Dec  Hex

P0 =
ID0⊕ID1⊕ID2⊕ID4

P1 = ¬
ID1⊕ID3⊕ID4⊕ID5

ID-Field
7 6 5 4  3 2 1 0

ID-Field
Dec   Hex
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 22

Appendices

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
7.3 EXAMPLE OF CHECKSUM CALCULATION
Below is the checksum calculation of four bytes shown. If the bytes are four data bytes 
or the protected identifier and three data bytes is not important; the calculation is the 
same.

Data = 0x4A, 0x55, 0x93, 0xE5 

The resulting sum is 0x19. Inversion yields the final result: checksum = 0xE6.

The receiving node can easily check the consistency of the received frame by using 
the same addition mechanism. When the received checksum (0xE6) is added to the 
intermediate result (0x19) the sum shall be 0xFF.

62c 0x3E 1 1 1 1 1 1  1 1 1 0 254 0xFE

63d 0x3F 0 1 1 0 1 1  1 1 1 1 191 0xBF
a. Identifier 60 (0x3C) is reserved for the Master Request command frame (see 

Section 2.3.4).
b. Identifier 61 (0x3D) is reserved for the Slave Response command frame (see 

Section 2.3.4).
c. Identifier 62 (0x3E) is reserved for the user-defined extended frame (see 

Section 2.3.5).
d. Identifier 63 (0x3F) is reserved for a future LIN extended format (see Section 2.3.6).

hex CY D7 D6 D5 D4 D3 D2 D1 D0
0x4A 0x4A 0 1 0 0 1 0 1 0

+0x55 = 0x9F 0 1 0 0 1 1 1 1 1
(Add Carry) 0x9F 1 0 0 1 1 1 1 1

+0x93 = 0x132 1 0 0 1 1 0 0 1 0
Add Carry 0x33 0 0 1 1 0 0 1 1
+0xE5 = 0x118 1 0 0 0 1 1 0 0 0

Add Carry 0x19 0 0 0 1 1 0 0 1

Invert 0xE6 1 1 1 0 0 1 1 0

0x19+0xE6 = 0xFF 1 1 1 1 1 1 1 1

ID[0..5]
Dec  Hex

P0 =
ID0⊕ID1⊕ID2⊕ID4

P1 = ¬
ID1⊕ID3⊕ID4⊕ID5

ID-Field
7 6 5 4  3 2 1 0

ID-Field
Dec   Hex
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Protocol Specification 
Revision 2.0

September 23, 2003; Page 23

Appendices

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
7.4 SYNTAX AND MATHEMATICAL SYMBOLS USED IN THIS STANDARD
Sequence diagrams
To visualize the implications of the standard, sequence diagrams are used when 
appropriate. The syntax used in these diagrams are exemplified in Figure 7.1.

Figure 7.1: Frame sequence example. The shaded areas represent the frame slots 
(with gaps added to clarify the drawing). Dotted/hollow arrows represent the headers 

and solid arrows represent responses.

Mathematical symbols
The following mathematical symbols and notations are used in this standard:

f ∈S Belongs to. True if f is in the set S.
a ⊕ b Exclusive or. True if exactly one of a and b is true.
¬ a Negate. True if a is false.

Master Slave2

ID=0x22

ID=0x17 A header than nobody responded to

A silent frame slot (master did not sent the header)

Slave1

ID=0x10

A frame published by the master and subscribed to

A frame that slave2 responded to, i.e. published and

by both slave1 and slave2

the master subscribed to
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 1

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
LIN
Diagnostic and Configuration Specification

Revision 2.0

This specification is provided on an "AS IS" basis only and cannot be the basis for any 
claims. 

© LIN Consortium, 2003.  
All rights reserved. The unauthorized copying, displaying or other use of any content 
from this document is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®.

All distributions are registered.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 2

Introduction

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
1 INTRODUCTION
The LIN diagnostic and configuration standard defines how a node shall be configured 
(which is mandatory for all nodes to implement) and three alternative methods to 
implement diagnostic data gathering (all of them are optional to implement).

The diagnostic and configuration data is transported by the LIN protocol as specified 
in the LIN Protocol Specification. A standardized API for the C programming lan-
guage is specified in the LIN API Specification.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 3

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2 NODE CONFIGURATION
LIN node configuration is used to set up LIN slave nodes in a cluster. It is a tool to 
avoid conflicts between slave nodes within a cluster built out of off-the-shelf nodes.

Configuration is done by having a large address space, consisting of a message iden-
tifier per frame, a LIN Product Identification per slave node and an initial NAD per 
slave node. Using these numbers it is possible to map unique frame identifiers to all 
frames transported in the cluster.

It is mandatory for a LIN node to support node configuration.

2.1 NODE MODEL
The memory of a slave node can be described as in Figure 2.1.

Figure 2.1: Slave node memory model.

A slave node has a fixed LIN Product Identification, see Section 2.4, and message 
identifiers for all frames.

After reset1, a slave node shall be in the following state:

• It shall have a NAD set equal to a dynamically determined instance value (the 
initial NAD) starting with the first instance being 1, the second 2, etc. The 
method for determinating the instance number is not part of the LIN standard2.

• It shall have all protected identifiers marked as invalid.
Frames with identifiers 0x3c and above have fixed (and valid) identifiers and do not 
have any message identifiers.

Note 1: If the configuration is saved in NVRAM at power off, the power on is not considered a re-
set.

Note 2: One possibility is to use jumpers that configure the instance.

ROM

RAM (or NVRAM)

NAD

LIN Product Identification
FunctionSupplier Variant

Instance generation (non-standardized)

Initial NAD

Message id Identifier Valid

Message id Identifier Valid

Message id Identifier Valid
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 4

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.2 WILDCARDS
To be able to leave some information unspecified the wildcard values in Table 2.1 may 
be used in node configuration requests:

Implementation of Supplier ID wildcard, Function ID wildcard and Message ID wild-
card is optional.

2.3 PDU STRUCTURE
The information in this section is a subset of the information provided in Section 3.3.1. 
The reason for this is that this subset is mandatory for a LIN node while the superset 
in Section 3.3.1 is optional.

The units that are transported in a LIN diagnostic frame are called PDU (Packet Data 
Unit). A PDU used for node configuration is be a complete message.

Messages issued by the client (ISO: tester, LIN: master) are called requests and mes-
sages issued by the server (ISO: master, LIN: slave) are called responses.

Flow control (as defined in ISO [1]) is not used in LIN clusters. If the back-bone bus 
test equipment needs flow control PDUs, these must be generated by the master 
node.

2.3.1 Overview
To simplify conversion between ISO diagnostic frames, [1], and LIN diagnostic frames 
a very similar structure is defined, which support the PDU types shown in Figure 2.2.

Figure 2.2: PDUs supported by LIN configuration. The left byte (NAD) is sent first and 
the right byte (D5) is sent last.

Table 2.1: Wildcards usable in all requests
Property Wildcard value

NAD 127
Supplier ID 0x7FFF
Function ID 0xFFFF
Message ID 0xFFFF

NAD PCI SID D1 D2 D3 D4 D5 PCI-type = SF

PCI-type = SFNAD PCI RSID D1 D2 D3 D4 D5

Request

Response
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 5

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Requests are always sent in master request frames and responses are always sent in 
slave response frames. The meaning of each byte in the PDUs is defined in the fol-
lowing sections.

2.3.2 NAD
NAD is the address of the slave node being addressed in a request, i.e. only slave 
nodes have an address. NAD is also used to indicate the source of a response.

NAD values are in the range 1 to 127, while 0 and 128 to 255 are reserved for other 
purposes:

0 Reserved for go-to-sleep-command, see LIN Protocol Spec-
ification

1 - 126 (0x7e) Diagnostic slave node addresses
127 (0x7f) Reserved for broadcast
128 (0x80) - 255 (0xff) Free usage, the frame is not to be interpreted as a diagnostic 

frame3. Also, see Section 3.2.
Note that there is a one-to-one mapping between a physical node and a logical node 
and it is addressed using the NAD.

2.3.3 PCI
The PCI (Protocol Control Information) contains the transport layer flow control infor-
mation. For node configuration, one interpretation of the PCI byte exist, as defined in 
Table 2.2.

The PCI type Single Frame (SF) indicates that the transported message fits into the 
single PDU, i.e. it contains at maximum five data bytes. The length shall then be set to 
the number of used data bytes plus one (for the SID or RSID).

2.3.4 SID
The Service Identifier (SID) specifies the request that shall be performed by the slave 
node addressed. 0xb0 to 0xb4 are used for configuration. This SID numbering is con-
sistent with ISO 15765-3 and places node configuration in an area “Defined by vehicle 
manufacturer”.

Note 3: Diagnostic frames with the first byte in the range 128 (0x80) to 255 (0xff) are allocated for 
free usage since the LIN 1.2 standard.

Table 2.2: Structure of the PCI byte for configuration PDUs.
Type PCI type Additional information

B7 B6 B5 B4 B3 B2 B1 B0
SF 0 0 0 0 Length
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 6

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.3.5 RSID
The Response Service Identifier (RSID) specifies the contents of the response. The 
RSID for a positive response is always SID + 0x40.

2.3.6 D1 to D5
The interpretation of the data bytes (up to five in a node configuration PDU) depends 
on the SID or RSID.

If a PDU is not completely filled the unused bytes shall be filled with ones, i.e. their 
value shall be 255 (0xff). This is necessary since a diagnostic frame is always eight 
bytes long.

2.4 LIN PRODUCT IDENTIFICATION
Each LIN part shall have a unique number, as outlined in Table 2.3.
t

The supplier ID is assigned to each supplier by the LIN Consortium. It is a 16 bit value, 
with the most significant bit equal to zero4.

The function ID is assigned by each supplier. If two products differ in function, i.e. LIN 
communication or physical world interaction, their function ID shall differ. For abso-
lutely equal function, however, the function ID shall remain unchanged.

Finally, the variant ID shall be changed whenever the product is changed but with 
unaltered function.

Incorporation of the LIN product identification into the LIN node is mandatory.

2.5 MANDATORY REQUESTS
Requests listed in this section shall be supported by all LIN slave nodes.

2.5.1 Assign frame identifier
Assign frame id is used to set a valid protected identifier to a frame specified by its 
message identifier. It shall be structured as shown in Table 2.4.

It is important to notice that the request provides the protected identifier, i.e. the iden-
tifier and its parity. Furthermore, frames with identifier 60 (0x3c) and up can not be 
changed (diagnostic frames, user-defined frames and reserved frames).

Table 2.3: LIN product identification
D1 D2 D3 D4 D5

Supplier ID 
LSB

Supplier ID 
MSB

Function ID 
LSB

Function ID 
MSB Variant ID

Note 4: Most significant bit set to one is reserved for future extended numbering systems.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 7

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
A response shall only be sent if the NAD and the Supplier ID match. If successful, the 
message in Table 2.5 shall be sent as a response. Implementation of a response is 
optional.

2.5.2 Read by identifier
It is possible to read the supplier identity and other properties from a slave node using 
the request in Table 2.6.

A response shall only be sent if the NAD, the Supplier ID and the Function ID match. 
A positive response shall be as shown in Table 2.8. If the request fails, i.e. sub-func-
tion not supported, the negative response in Table 2.9 shall be sent.

The identifiers defined are listed in Table 2.7. 

Table 2.4: Assign frame id request
NAD PCI SID D1 D2 D3 D4 D5

NAD 0x06 0xb1 Supplier ID 
LSB

Supplier ID 
MSB

Message ID 
LSB

Message ID 
MSB Protected ID

Table 2.5: Positive assign frame id response
NAD PCI RSID Unused
NAD 0x01 0xf1 0xff 0xff 0xff 0xff 0xff

Table 2.6: Read by identifier request
NAD PCI SID D1 D2 D3 D4 D5

NAD 0x06 0xb2 Identifier Supplier ID 
LSB

Supplier ID 
MSB

Function ID 
LSB

Function ID 
MSB

Table 2.7: Identifiers that may be read using read by identifier request.
Identifier Interpretation Length of response

0 LIN Product Identification 5 + RSID
1 Serial number 4 + RSID

2 - 15 Reserved Negative response; Sub-function not supported.
16 - 31 Message ID 1..16 3 bytes + RSID
32 - 63 User defined User defined

64 - 255 Reserved Reserved
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 8

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Table 2.8: Possible positive read by identifier response. Each row represents one 
possible response.

Id NAD PCI RSID D1 D2 D3 D4 D5

0 NAD 0x06 0xf2 Supplier ID LSB Supplier ID MSB Function ID LSB Function ID 
MSB Variant

1 NAD 0x05 0xf2 Serial 0, LSB Serial 1 Serial 2 Serial 3, MSB 0xff
Reserved

16 NAD 0x04 0xf2 Message ID 1 
LSB

Message ID 1 
MSB

Protected ID 
(or FF) 0xff 0xff

17 NAD 0x04 0xf2 Message ID 2 
LSB

Message ID 2 
MSB

Protected ID 
(or FF) 0xff 0xff

18 NAD 0x04 0xf2 Message ID 3 
LSB

Message ID 3 
MSB

Protected ID 
(or FF) 0xff 0xff

19 NAD 0x04 0xf2 Message ID 4 
LSB

Message ID 4 
MSB

Protected ID 
(or FF) 0xff 0xff

20 NAD 0x04 0xf2 Message ID 5 
LSB

Message ID 5 
MSB

Protected ID 
(or FF) 0xff 0xff

21 NAD 0x04 0xf2 Message ID 6 
LSB

Message ID 6 
MSB

Protected ID 
(or FF) 0xff 0xff

22 NAD 0x04 0xf2 Message ID 7 
LSB

Message ID 7 
MSB

Protected ID 
(or FF) 0xff 0xff

23 NAD 0x04 0xf2 Message ID 8 
LSB

Message ID 8 
MSB

Protected ID 
(or FF) 0xff 0xff

24 NAD 0x04 0xf2 Message ID 9 
LSB

Message ID 9 
MSB

Protected ID 
(or FF) 0xff 0xff

25 NAD 0x04 0xf2 Message ID 10 
LSB

Message ID 10 
MSB

Protected ID 
(or FF) 0xff 0xff

26 NAD 0x04 0xf2 Message ID 11 
LSB

Message ID 11 
MSB

Protected ID 
(or FF) 0xff 0xff

27 NAD 0x04 0xf2 Message ID 12 
LSB

Message ID 12 
MSB

Protected ID 
(or FF) 0xff 0xff

28 NAD 0x04 0xf2 Message ID 13 
LSB

Message ID 13 
MSB

Protected ID 
(or FF) 0xff 0xff

29 NAD 0x04 0xf2 Message ID 14 
LSB

Message ID 14 
MSB

Protected ID 
(or FF) 0xff 0xff

30 NAD 0x04 0xf2 Message ID 15 
LSB

Message ID 15 
MSB

Protected ID 
(or FF) 0xff 0xff

31 NAD 0x04 0xf2 Message ID 16 
LSB

Message ID 16 
MSB

Protected ID 
(or FF) 0xff 0xff

Table 2.9: Negative response.
NAD PCI RSID D1 D2 Unused

NAD 0x03 0x7f Requested SID 
(= 0xb2)

Error code 
(= 0x12) 0xff 0xff 0xff
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 9

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Notes
Support of Identifier 0 (LIN Product Identification) is the only mandatory identifier, i.e. 
the serial number and message IDs are optional.

Identifiers 32 - 63 are user defined and therefore not listed in Table 2.8.

2.6 OPTIONAL REQUESTS
Requests listed in this section are optional and may be implemented in a LIN slave 
node. The requests are optional because their cost impact is not always motivated. 
Still, they are specified in order to encourage a uniform solution to the problem they 
intend to solve. That is, solving the same task as the following requests in a different 
way is recommended.

2.6.1 Assign NAD
Assign NAD is used to resolve conflicting node addresses. It shall be structured as 
shown in Table 2.10.

A response shall only be sent if the NAD, the Supplier ID and the Function ID match. If 
successful, the message in Table 2.11 shall be sent as response. Implementation of 
the response is optional.

Note
This service always uses the initial NAD; this is to avoid the risk of losing the address 
of a node. The NAD used for the response shall be the same as in the request, i.e. the 
initial NAD.

2.6.2 Conditional change NAD
The conditional change NAD is used to detect and separate unknown slave nodes in a 
cluster. Potential reasons for unknown nodes to appear in a cluster are, e.g. incorrect 
assembly when manufacturing the cluster or incorrect node replacement during ser-
vice. The conditional change NAD is intended to detect the node and allow the master 
node to report a diagnostic message describing the problem.

The behaviour of the request is:

Table 2.10: Assign NAD request
NAD PCI SID D1 D2 D3 D4 D5

Initial NAD 0x06 0xb0 Supplier ID 
LSB

Supplier ID 
MSB

Function ID 
LSB

Function ID 
MSB New NAD

Table 2.11: Positive assign NAD response
NAD PCI RSID Unused

Initial NAD 0x01 0xf0 0xff 0xff 0xff 0xff 0xff
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 10

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
1. Get the identifier specified in Table 2.8 and selected by Id.
2. Extract the data byte selected by Byte (Byte = 1 corresponds to the first byte, D1).
3. Do a bitwise XOR with Invert.
4. Do a bitwise AND with Mask.
5. If the final result is zero then change the NAD to New NAD.

Note
Note that Conditional Change NAD is addressed with the present NAD, i.e. it does not 
always use the initial NAD as opposed to the Assign NAD request.

2.6.3 Data dump
Note
The SID = 0xb4 is reserved for initial configuration of a node by the node supplier and 
the format of this message is supplier specific. Hence, this SID shall not be used in 
operational LIN clusters.

Table 2.12: Conditional change NAD request
NAD PCI SID D1 D2 D3 D4 D5
NAD 0x06 0xb3 Id Byte Mask Invert New NAD

Table 2.13: Optional positive Conditional change NAD response
NAD PCI RSID Unused
NAD 0x01 0xf3 0xff 0xff 0xff 0xff 0xff

Table 2.14: Data dump request
NAD PCI SID D1 D2 D3 D4 D5
NAD 0x06 0xb4 User defined User defined User defined User defined User defined

Table 2.15: Data dump response
NAD PCI SID D1 D2 D3 D4 D5
NAD 0x06 0xf4 User defined User defined User defined User defined User defined
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 11

Diagnostics

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3 DIAGNOSTICS
Three methods for gathering diagnostic information are specified below. The methods 
may coexist in the same cluster or even in the same node. Implementation of any of 
the methods listed herein is optional.

3.1 SIGNAL BASED DIAGNOSTICS
The simplest form of diagnostic information gathering is to use ordinary signals in nor-
mal, unconditional frames. The characteristics of this solution are:

• Very low overhead in slave nodes.
• Standardized in concept (since it uses normal signals/frames).
• Inflexible since the data contents is fixed in the frame structure.

3.2 USER DEFINED DIAGNOSTICS
It is possible to use the free range of diagnostic frames. The free range of diagnostic 
frames must all have the first data byte in the range 128 (0x80) to 255 (0xff), see 
Section 2.3.2. The characteristics of a solution based on the free range diagnostics 
are:

• Non-standardized and, hence, non-portable.
• Reasonable in overhead since the design is made specifically to fit the needs.

Since the user defined diagnostics is not standardized, the signal based diagnostics is 
the preferred solution.

3.3 DIAGNOSTICS TRANSPORT LAYER
Use of the LIN diagnostic transport layer is targeting systems where ISO diagnostics 
are performed on the (CAN-based) back-bone bus and where the system builder 
wants to use the same diagnostic capabilities on the LIN sub-bus clusters. The mes-
sages are in fact identical to the ISO messages and the PDUs carrying the messages 
are very similar, as defined in Section 3.3.1. A typical system configuration is shown in 
Figure 3.1.

The goals of the LIN diagnostic transport layer are:

• Low load on master.
• Providing full (or a subset thereof) ISO diagnostics directly on the LIN slaves.
• Targeting clusters built with powerful nodes (not the mainstream low-cost 

LIN).
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 12

Diagnostics

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Figure 3.1: Typical system setup for a LIN cluster using the transport layer.

3.3.1 PDU structure
The information in this section is a superset of the information provided in Section 2.3.

The units that are transported in a LIN diagnostic frame are called PDU (Packet Data 
Unit). A PDU can be a complete message or a part of a message; in the latter case, 
multiple concatenated PDUs form the complete message.

Messages issued by the client (ISO: tester, LIN: master) are called requests and mes-
sages issued by the server (ISO: master, LIN: slave) are called responses.

Flow control (as defined in ISO [1]) is not used in LIN clusters. If the back-bone bus 
test equipment needs flow control PDUs, these must be generated by the master 
node.

Overview
To simplify conversion between ISO diagnostic frames, [1], and LIN diagnostic frames 
a very similar structure is defined, which support the PDU types shown in Figure 3.2.

Backbone bus

LIN cluster

Master

Tester

Slave1 Slave2
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 13

Diagnostics

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Figure 3.2: PDUs supported by the LIN diagnostic transport layer. The left byte (NAD) 
is sent first and the right byte (D4, D5 or D6) is sent last.

Requests are always sent in master request frames and responses are always sent in 
slave response frames. The meaning of each byte in the PDUs is defined in the fol-
lowing sections.

NAD
The NAD is defined in Section 2.3.2.

PCI
The PCI (Protocol Control Information) contains the transport layer flow control infor-
mation. Three interpretations of the PCI byte exist, as defined in Table 3.1.

The PCI type Single Frame (SF) indicates that the transported message fits into the 
single PDU, i.e. it contains at maximum five data bytes. The length shall then be set to 
the number of used data bytes plus one (for the SID or RSID).

The PCI type First Frame (FF) is used to indicate the start of a multi PDU message; 
the following frames are of CF type, see below. The total number of data bytes in the 
message plus one (for the SID or RSID) shall be transmitted as Length: The four most 
significant bits of Length is transmitted in the PCI byte (the eight least significant bits 
are sent in LEN, see below).

Table 3.1: Structure of the PCI byte.
Type PCI type Additional information

B7 B6 B5 B4 B3 B2 B1 B0
SF 0 0 0 0 Length
FF 0 0 0 1 Length/256
CF 0 0 1 0 Frame counter

NAD PCI SID D1 D2 D3 D4

NAD PCI LEN SID D1 D2 D3 D4

D5 PCI-type = SF

PCI-type = FF

PCI-type = CF

NAD PCI LEN RSID D1 D2 D3 D4

NAD PCI D1 D2 D3 D4 D5

PCI-type = SF

PCI-type = FF

D6

NAD PCI RSID D1 D2 D3 D4 D5

Request

Response
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 14

Diagnostics

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
A multi-PDU message is continued with a number of Continuation Frames (CF). The 
first CF frame of a message is numbered 1, the second 2 and so on. If more than 15 
CF PDUs are needed to transport the complete message, the frame counter wraps 
around and continues with 0, 1,...

LEN
A LEN byte is only used in FF frames; it contains the eight least significant bits of the 
message Length. Thus, the maximum length of a message is 4095 (0xfff) bytes.

SID
The Service Identifier (SID) specifies the request that shall be performed by the slave 
node addressed. 0 to 0xaf and 0xb8 to 0xfe are used for diagnostics while 0xb0 to 
0xb7 are used for node configuration. This SID numbering is consistent with ISO 
15765-3 and places node configuration in an area “Defined by vehicle manufacturer”.

RSID
The Response Service Identifier (RSID) specifies the contents of the response.

D1 to D6
The interpretation of the data bytes (up to six in a single PDU) depends on the SID or 
RSID. In multi-PDU messages, all the bytes in all PDUs of the message shall be con-
catenated into a complete message, before being parsed.

If a PDU is not completely filled (applies to CF and SF PDUs only) the unused bytes 
shall be filled with ones, i.e. their value shall be 255 (0xff).

3.3.2 Defined requests
The LIN transport layer uses the same diagnostic messages as the ISO diagnostics 
standard, [2]. From this follows that SID and RSID shall also be according to the ISO 
standard. A node may implement a sub-set of the services defined in the ISO stan-
dard.

3.3.3 ISO timing constraints
The timing used in ISO [1] [2] is based on several properties, e.g. P2, ST and T1. The 
properties shall be within a defined range. Since LIN is slower than CAN, the values 
have to be adjusted accordingly.

The values to use for these properties are not part of the LIN standard. They are con-
trolled by selecting a schedule table that has the desired period between the diagnos-
tic frames. This way, the values are under full control of the cluster developer and may 
be set according to the relevant trade-offs.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 15

Diagnostics

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3.3.4 Sequence diagrams
Two communication cases exist; the tester wants to send a diagnostic request to a 
slave node and the slave node wants to send a diagnostic response to the tester. 
Below, Figure 3.3 and Figure 3.4 shows the message flow in these two cases.

It is important that the unit orchestrating the communication (the tester or the master) 
avoids requesting multiple slaves to respond simultaneously (as this would cause bus 
collisions).

Figure 3.3: Gatewaying of CAN messages to LIN.

Figure 3.4: Gatewaying of LIN messages to CAN.

Silent slot (No pending CAN tester frame)

Master Slave

ID=0x3c
Diagnostic request (gatewayed from CAN)

Silent slot (No pending CAN tester frame)

Tester

Diagnostic request

Header, but no response from slave

Master Slave

ID=0x3d
Diagnostic response (gatewayed to CAN)

Header, but no response from slave

Tester

Diagnostic response

ID=0x3d

ID=0x3d
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Diag and Config Spec 
Revision 2.0

September 23, 2003; Page 16

References

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
4 REFERENCES
[1] “Road vehicles - Diagnostics on Controller Area Network (CAN) - Part 2: Network 

layer services“, International Standard ISO 15765-2.4, Issue 4, 2002-06-21

[2] “Road vehicles - Diagnostics on controller area network (CAN) - Part 3: Imple-
mentation of diagnostic services”, International Standard ISO 15765-3.5, Issue 5, 
2002-12-12.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 1

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
LIN
Physical Layer Specification

Revision 2.0

This specification is provided on an "AS IS" basis only and cannot be the basis for any 
claims. 

© LIN Consortium, 2003.  
All rights reserved. The unauthorized copying, displaying or other use of any content 
from this document is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®.

All distributions are registered.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 2

Oscillator 
Tolerance

.

er

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
1 OSCILLATOR TOLERANCE
On-chip clock generators can achieve a frequency tolerance of better than ± 14% with 
internal-only calibration. This accuracy is sufficient to detect a synchronization break 
in the message stream. The subsequent fine calibration using the synchronization 
field ensures the proper reception and transmission of the message. The on-chip 
oscillator must allow for accurate bite rate measurement and generation for the 
remainder of the message frame, taking into account effects of anything, which affects 
oscillator frequency, such as temperature and voltage drift during operation.

no. clock tolerance Name ∆F / FNom
1.1.1 master node 

(deviation from nominal clock rate. The nominal 
clock rate FNom is defined in the LIN Description 
File).

FTOL_RES_MASTER < ±0.5%

1.1.2 slave node without making use of synchronization  
(deviation from nominal clock rate) 
Note: For communication between any two nodes 
their bit rate must not differ by more than ±2%.

FTOL_RES_SLAVE < ±1.5%

1.1.3 deviation of slave node clock from the nominal 
clock rate before synchronization; relevant for 
nodes making use of synchronization and direct 
SYNCH BREAK detection. 

FTOL_UNSYNCH < ±14%

Table 1.1: Oscillator Tolerances relative to nominal Clock

no. clock tolerance Name ∆F / FMast
1.2.1 deviation of slave node clock relative to the mas-

ter node clock after synchronization; relevant for 
nodes making use of synchronization; any slave 
node must stay within this tolerance for all fields 
of a frame which follow the SYNCH FIELD.  
Note: For communication between any two nodes 
their bit rate must not differ by more than ±2%.

FTOL_SYNCH < ±2%

Table 1.2: Slave Oscillator Tolerance relative to Master Node
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 3

Bit Timing 
Requirements and 

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2 BIT TIMING REQUIREMENTS AND 
SYNCHRONIZATION PROCEDURE

2.1 BIT TIMING REQUIREMENTS
If not otherwise stated, all bit times in this document use the bit timing of the Master 
Node as a reference.

2.2 SYNCHRONIZATION PROCEDURE
The SYNCH FIELD consists of the data ’0x55’ inside a byte field. The synchronization 
procedure has to be based on time measurement between falling edges of the pat-
tern. The falling edges are available in distances of 2, 4, 6 and 8 bit times which allows 
a simple calculation of the basic bit times Tbit. 

Figure 2.1: SYNCHRONIZATION FIELD

It is recommended to measure the time between the falling edges of both, the start bit 
and bit 7, and to divide the obtained value by 8. For the division by 8 it is recom-
mended to shift the binary timer value by three positions towards LSB, and to use the 
first insignificant bit to round the result.

START

 2 Tbit

BIT
STOP
 BIT

SYNCH FIELD

0 1 2 3 4 5 6 7

8 Tbit

 2 Tbit  2 Tbit  2 Tbit
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 4

Line Driver/
Receiver

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3 LINE DRIVER/RECEIVER
3.1 GENERAL CONFIGURATION
The bus line driver/receiver is an enhanced implementation of the ISO 9141 standard 
[1]. It consists of the bidirectional bus line LIN which is connected to the driver/receiver 
of every bus node, and is connected via a termination resistor and a diode to the pos-
itive battery node VBAT (see Figure 3.1). The diode is mandatory to prevent an uncon-
trolled power-supply of the ECU from the bus in case of a ’loss of battery’. 

It is important to note that the LIN specification refers to the voltages at the external 
electrical connections of the electronic control unit (ECU), and not to ECU internal 
voltages. In particular the parasitic voltage drops of reverse polarity diodes have to be 
taken into account when designing a LIN transceiver circuit. 

3.2 DEFINITION OF SUPPLY VOLTAGES FOR THE PHYSICAL INTERFACE
VBAT denotes the supply voltage at the connector of the control unit. Electronic com-
ponents within the unit may see an internal supply VSUP being different from VBAT
(see Figure 3.1). This can be the result of protection filter elements and dynamic volt-
age changes on the bus. This has to be taken into consideration for the implementa-
tion of semiconductor products for LIN.

Figure 3.1: Illustration of the Difference between External Supply Voltage VBAT and 
the Internal Supply Voltage VSUP

Rx

Tx

Vbat

Gnd

(Kl. 30)

(Kl. 31)

Master ECU

Vbus

Vsup

Vsup: internal supply for electronics

1K30K

Transceiver IC

Vsup
Vrec

t

Vbus

Vbat

Voltage Drop over
the diodes in pull up path

VBUSdom

Dser_Master

Dser_int
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 5

Line Driver/
Receiver

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3.3 SIGNAL SPECIFICATION

Figure 3.2: Voltage Levels on the Bus Line

For a correct transmission and reception of a bit it has to made sure that the signal is 
available with the correct voltage level (dominant or recessive) at the bit sampling time 
of the receiver. Ground shifts as well as drops in the supply voltage have to be taken 
into consideration as well as symmetry failures in the propagation delay. Figure 3.3
shows the timing parameters that impact the behaviour of the LIN Bus. 
The minimum and maximum values of the different parameters are listed in the follow-
ing tables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VSUP

dominant

recessive

driver node
VSUP

60%

40%
dominant

recessive

receiver node
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 6

Line Driver/
Receiver

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Timing diagram:

Figure 3.3: Definition of bus timing parameters

tBit tBit tBit

THRec(max)
THDom(max)

THRec(min)
THDom(min)

tBus_dom(max) tBus_rec(min)

tBus_dom(min) tBus_rec(max)

Thresholds of

Thresholds of

VSUP
(Transceiver supply
of transmitting node)

trx_pdf(1) trx_pdr(1)

trx_pdr(2) trx_pdf(2)

RXD
(output of receiving Node 1)

RXD
(output of receiving Node 2)

TXD
(input to transmitting Node)

receiving node 1

receiving node 2

LIN Bus Signal
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 7

Line Driver/
Receiver

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3.4 ELECTRICAL DC PARAMETERS
The electrical DC parameters of the LIN Physical Layer and the termination resistors 
are listed in Table 3.1 and Table 3.2, respectively. Note that in case of an integrated 
resistor/diode network no parasitic current paths must be formed between the bus line 
and the ECU-internal supply (VSUP), for example by ESD elements. 

no. parameter min. typ. max. unit comment / condition
3.1.1 VBAT a 8 18 V operating voltage range

3.1.2 VSUP 
b 7.0 18 V supply voltage range 

3.1.3 VSUP_NON_OP -0.3 40 V voltage range within which the 
device is not destroyed

3.1.4 IBUS_LIM
c 40 200 mA Current Limitation for Driver domi-

nant state 
driver on  
VBUS = VBAT_max

d

3.1.5 IBUS_PAS_dom -1 mA Input Leakage Current at the 
Receiver incl. Pull-Up Resistor as 
specified in Table 3.2
driver off 
VBUS = 0V 
VBAT= 12V

3.1.6 IBUS_PAS_rec  20 µA driver off 
8V<VBAT<18V 
8V<VBUS<18V 
VBUS > VBAT

3.1.7 IBUS_NO_GND  -1 1 mA Control unit disconnected from 
ground
GNDDevice = VSUP 
0V<VBUS<18V 
VBAT = 12V

Loss of local ground must not 
affect communication in the resid-
ual network.

Table 3.1: Electrical DC Parameters of the LIN Physical Layer
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 8

Line Driver/
Receiver

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
 
Note:

All parameters are defined for the ambient temperature range from -40°C to 
125°C.

3.1.8 IBUS  100 µA VBAT disconnected 
VSUP_Device = GND 

0<VBUS<18V

Node has to sustain the current 
that can flow under this condition. 
Bus must remain operational under 
this condition.

3.1.9 VBUSdom 0.4 VSUP receiver dominant state

3.1.10 VBUSrec 0.6 VSUP receiver recessive state

3.1.11 VBUS_CNT 0.475 0.5 0.525 VSUP VBUS_CNT =(Vth_dom+ Vth_rec)/2 e

3.1.12 VHYS 0.175 VSUP VHYS = Vth_rec -Vth_dom

3.1.13 VSerDiode 0.4 0.7 1.0 V Voltage Drop at the serial Diodes 
Dser_Master and Dser_int in pull up 
path (Figure 3.1).

3.1.14 VShift_BAT 0 10% VBAT VBAT-Shift

3.1.15 VShift_GND 0 10% VBAT GND-Shift

a. VBAT denotes the supply voltage at the connector of the control unit and may be different 
from the internal supply VSUP for electronic components (see Section 3.2).
b. VSUP denotes the supply voltage at the transceiver inside the control unit and may be differ-
ent from the external supply VBAT for control units (see Section 3.2).
c. IBUS: Current flowing into the node.
d. A transceiver must be capable to sink at least 40mA. The maximum current flowing into the 
node must not exceed 200mA under DC conditions to avoid possible damage.
e. Vth_dom: receiver threshold of the recessive to dominant LIN bus edge. 
Vth_rec:  receiver threshold of the dominant to recessive LIN bus edge. 

no. parameter min. typ. max. unit comment
3.2.1 Rmaster 900 1000 1100 Ω The serial diode is mandatory (Figure 3.1).

3.2.2 Rslave 20 30 60 KΩ The serial diode is mandatory.

Table 3.2: Parameters of the Pull-Up Resistors

no. parameter min. typ. max. unit comment / condition

Table 3.1: Electrical DC Parameters of the LIN Physical Layer
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 9

Line Driver/
Receiver

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3.5 ELECTRICAL AC PARAMETERS
The electrical AC parameters of the LIN Physical Layer are listed in Table 3.3, 
Table 3.4, and Table 3.5, with the parameters being defined in Figure 3.3. The electri-
cal AC-Characteristics of the bus can be strongly affected by the line characteristics 
as shown in Section 3.3. The time constant τ (and thus the overall capacitance) of the 
bus (Section 3.6) has to be selected carefully in order to allow for a correct signal 
implementation under worst case conditions.

The following table (Table 3.3) specifies the timing parameters for proper operation at 
20.0 kBit/sec. 

Table 3.3: Driver Electrical AC Parameters of the LIN Physical Layer (20kBit/s)
 
For improved EMC performance, exception is granted for speeds of 10.4 kBit/sec or 
below. For details see the following table (Table 3.4), which specifies the timing 
parameters for proper operation at 10.4 kBit/sec. 

Table 3.4: Driver Electrical AC Parameters of the LIN Physical Layer (10.4kBit/s)

no. parameter min. typ. max. unit comment / condition
LIN Driver, Bus load conditions (CBUS ; RBUS): 1nF; 1kΩ / 6,8nF;660Ω / 10nF;500Ω

3.3.1 D1  
(Duty Cycle 1)

0.396 THRec(max) = 0.744 x VSUP;  
THDom(max) = 0.581 x VSUP;  
VSUP = 7.0V...18V; tBit = 50µs;  
D1 = tBus_rec(min) / (2 x tBit)

3.3.2 D2 
(Duty Cycle 2)

0.581 THRec(min) = 0.284 x VSUP;  
THDom(min) = 0.422 x VSUP;  
VSUP = 7.6V...18V; tBit = 50µs;  
D2 = tBus_rec(max) / (2 x tBit)

no. parameter min. typ. max. unit comment / condition
LIN Driver, Bus load conditions (CBUS ; RBUS): 1nF; 1kΩ / 6,8nF;660Ω / 10nF;500Ω

3.4.1 D3 
(Duty Cycle 3)

0.417 THRec(max) = 0.778 x VSUP;  
THDom(max) = 0.616 x VSUP;  
VSUP = 7.0V...18V; tBit = 96µs;  
D3 = tBus_rec(min) / (2 x tBit)

3.4.2 D4 
(Duty Cycle 4)

0.590 THRec(min) = 0.251 x VSUP;  
THDom(min) = 0.389 x VSUP;  
VSUP = 7.6V...18V; tBit = 96µs;  
D4 = tBus_rec(max) / (2 x tBit)
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 10

Line Driver/
Receiver

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Application specific implementations (ASICs) shall meet the parameters in Table 3.3 
and/or Table 3.4. If both sets of parameters are implemented, the proper mode shall 
be selected based on the bus bit rate. 

Table 3.5: Receiver Electrical AC Parameters of the LIN Physical Layer

The EMC behavior of the LIN bus depends on the signal shape represented by slew 
rate and other factors such as di/dt and d²V/dt². The signal shape should be carefully 
selected in order to reduce emissions on the one hand and allow for bit rates up to 20 
kBit/sec on the other.  

no. parameter min. typ. max. unit comment / condition
LIN Receiver, RXD load condition (CRXD): 20pF; (if open drain behaviour: Rpull-up = 2.4kΩ)

3.5.1 trx_pd 6 µs propagation delay of receiver 

3.5.2 trx_sym -2 2 µs symmetry of receiver propagation delay 
rising edge w.r.t. falling edge
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 11

Line Driver/
Receiver

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3.6 LINE CHARACTERISTICS
The maximum slew rate of rising and falling bus signals are in practice limited by the 
active slew rate control of typical bus transceivers. The minimum slew rate for the ri-
sing signal, however, can be given by the RC time constant. Therefore, the bus capac-
itance should be kept low in order to keep the waveform asymmetry small. The capac-
itance of the master module can be chosen higher than in the slave modules, in order 
to provide a ’buffer’ in case of network variants with various number of nodes. The 
total bus capacitance CBUS can be calculated by (3.6.1) as

Equation 3.6.1: CBUS = CMASTER + n · CSLAVE + C’LINE · LENBUS 

the RC time constant τ is calculated by (3.6.2) as

Equation 3.6.2: τ = CBUS ·RBUS

with 

Equation 3.6.3: RBUS = RMaster || RSlave1 || RSlave2 || ... || RSlave_n

under consideration of the parameters given in Table 3.6.

CMASTER and CSLAVE are defining the total node capacitance at the connector of an 
ECU including the physical bus driver (Transceiver) and all other components applied 
to the LIN bus pin like capacitors or protection circuitry.

The number of nodes in a LIN cluster should not exceed 16.1

min typ. max unit
3.6.1 total length of bus line LENBUS 40 m
3.6.2 total capacitance of the bus including 

slave and master capacitances
CBUS 1 4 10 nF

3.6.3 time constant of overall system τ 1 5 µs
3.6.4 capacitance of master node CMASTER 220 pF
3.6.5 capacitance of slave node CSLAVE 220 250 pF
3.6.6 line capacitance C’LINE 100 150 pF/m

Table 3.6: Line Characteristics and Parameters.

Note 1: 

Note 1: The network impedance may prohibit a fault free communication under worst case condi-
tions with more than 16 nodes. Every additional node lowers the network resistance by approxi-
mately 3% (30 kΩ || ~1 kΩ).
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Physical Layer Spec 
Revision 2.0

September 23, 2003; Page 12

Line Driver/
Receiver

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3.7 ESD/EMI COMPLIANCE
Semiconductor Physical Layer devices must comply with requirements for protection 
against human body discharge according to IEC 1000-4-2:1995. The minimum dis-
charge voltage level is ± 2000V.

Note: 

The required ESD level for automotive applications can be up to ± 8000V at the con-
nectors of the ECU.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 1

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
LIN
Application Program Interface Specification

Revision 2.0

This specification is provided on an "AS IS" basis only and cannot be the basis for any 
claims. 

© LIN Consortium, 2003.  
All rights reserved. The unauthorized copying, displaying or other use of any content 
from this document is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®.

All distributions are registered.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 2

Introduction

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
1 INTRODUCTION
A LIN device driver may be implemented in hardware or in software. In the latter case, 
a multitude of languages exist to chose from. It is also possible to integrate the LIN 
device driver directly with the application.

This document defines a mandatory interface to a software LIN device driver imple-
mented in the C programming language. Thus, hardware implementations are not 
standardized nor are implementations in other programming languages. If LIN device 
drivers appear in other languages, e.g. Ada, they are encouraged to use the concepts 
presented in this document, although the syntax will be different.

The API is split in two sections; the LIN core API and the LIN diagnostic API, since the 
diagnostic features are optional in LIN.

The behavior covered by the LIN core API is defined in the LIN Protocol Specifica-
tion and the behavior of the LIN diagnostic API is covered in the LIN diagnostic and 
Configuration Specification.

1.1 CONCEPT OF OPERATION

1.1.1 System generation
The LDF file (see LIN Configuration Language Specification) is parsed by a tool 
and the API and driver module is generated. This is called system generation.

Since the LDF file only concerns LIN cluster aspects, more information may be 
needed in the system generation process, but this is not part of the LIN standard1.

1.1.2 API

LIN core API 
The LIN core API uses a signal based interaction between the application and the LIN 
core. This implies that the application does not have to bother with frames and trans-
mission of frames. Tools exist to detect transfer of a specific frame if this is necessary, 
see Section 2.3. Of course, API calls to control the LIN core also exist.

Two versions exist of most of the API calls; static routines and dynamic routines. The 
static routines embed the name of the signal or interface in the routine name, while 
the dynamic routines provide this as a parameter. The choice between the two is a 
matter of taste.

Note 1: LIN development tool vendors are free to implement this to fit their own tool chains.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 3

Introduction

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
LIN node configuration API 
The LIN node configuration API is message based, i.e. the application in the master 
node calls an API routine that sends a request to the specified slave node and awaits 
a response. The slave node LIN device driver handles the request/response automat-
ically.

LIN diagnostic transport layer API
The LIN diagnostic transport layer is also message based but its intended use is to 
work as a transport layer for messages to a diagnostic message parser outside of the 
LIN device driver, typically a ISO diagnostic module. Two exclusively alternative APIs 
exist, one raw that allows the application to control the contents of every frame sent 
and one “cooked” that performs the full transport layer function.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 4

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2 CORE API
The LIN core API has a set of functions all based on the idea to give the API a sepa-
rate name space, in order to minimize the risk of conflicts with existing software. All 
functions and types will have the prefix "l_" (lowercase "L" followed by an "under-
score").

The LIN core shall define the following types:

• l_bool
• l_ioctl_op
• l_irqmask
• l_u8
• l_u16

In order to gain efficiency, the majority of the functions will be static functions (no 
parameters are needed, since one function exist per signal, per interface, etc.).

2.1 DRIVER AND CLUSTER MANAGEMENT

2.1.1 l_sys_init

Prototype
l_bool l_sys_init (void);

Description
l_sys_init performs the initialization of the LIN core.

Returns
Zero if the initialization succeeded and 
Non-zero if the initialization failed

Notes
The call to the l_sys_init is the first call a user must use in the LIN core before using 
any other API functions.

2.2 SIGNAL INTERACTION

2.2.1 Signal types
The signals will be of three different types: 
l_bool for one bit signals; zero if false, non-zero otherwise 
l_u8 for signals of the size 1 - 8 bits 
l_u16 for signals of the size 9 - 16 bits
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 5

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.2.2 Scalar signal read

Dynamic prototype
l_bool l_bool_rd (l_signal_handle sss);
l_u8 l_u8_rd (l_signal_handle sss);
l_u16 l_u16_rd (l_signal_handle sss);

Static implementation
l_bool l_bool_rd_sss (void);
l_u8 l_u8_rd_sss (void);
l_u16 l_u16_rd_sss (void);

Where sss is the name of the signal, e.g. l_u8_rd_EngineSpeed ().

Description
Reads and returns the current value of the signal specified by the name sss.

2.2.3 Scalar signal write

Dynamic prototype
void l_bool_wr (l_signal_handle sss, l_bool v);
void l_u8_wr (l_signal_handle sss, l_u8 v);
void l_u16_wr (l_signal_handle sss, l_u16 v);

Static implementation
void l_bool_wr_sss (l_bool v);
void l_u8_wr_sss (l_u8 v);
void l_u16_wr_sss (l_u16 v);

Where sss is the name of the signal, e.g. l_u8_wr_EngineSpeed (v).

Description
Sets the current value of the signal specified by the name sss to the value v.

2.2.4 Byte array read

Dynamic prototype
void l_bytes_rd (l_signal_handle sss,
                 l_u8            start,  /* first byte to read from    */
                 l_u8            count,  /* number of bytes to read    */
                 l_u8* const     data);  /* where data will be written */

Static implementation
void l_bytes_rd_sss (l_u8            start,
                     l_u8            count,
                     l_u8* const     data);

Where sss is the name of the signal, e.g. l_bytes_rd_EngineSpeed (..).
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 6

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Description
Reads and returns the current value of the selected bytes in the signal specified by 
the name sss. 

Assume that a byte array is 6 bytes long, numbered 0 to 5. Reading byte 2 and 3 from 
this array requires start to be 2 (skipping byte 0 and 1) and count to be 2 (reading byte 
2 and 3). In this case byte 2 is written to data[0] and byte 3 is written to data[1].

The sum of start and count shall never be greater than the length of the byte array, 
although the device driver may choose not to enforce this in runtime.

2.2.5 Byte array write

Dynamic prototype
void l_bytes_wr (l_signal_handle   sss,
                 l_u8              start,  /* first byte to write to   */
                 l_u8              count,  /* number of bytes to write */
                 const l_u8* const data);  /* where data is read from  */

Static implementation
void l_bytes_wr_sss (l_u8              start,
                     l_u8              count,
                     const l_u8* const data);

Where sss is the name of the signal, e.g. l_bytes_wr_EngineSpeed (..).

Description
Sets the current value of the selected bytes in the signal specified by the name sss to 
the value specified.

Assume that a byte array is 7 bytes long, numbered 0 to 6. Writing byte 3 and 4 from 
this array requires start to be 3 (skipping byte 0, 1 and 2) and count to be 2 (writing 
byte 3 and 4). In this case byte 3 is read from data[0] and byte 4 is read from data[1].

The sum of start and count shall never be greater than the length of the byte array, 
although the device driver may choose not to enforce this in runtime.

2.3 NOTIFICATION
Flags are local objects in a node and they are used to synchronize the application pro-
gram with the LIN core. The flags will be automatically set by the LIN core and can 
only be tested or cleared by the application program.

2.3.1 l_flg_tst

Dynamic prototype
l_bool l_flg_tst (l_flag_handle fff);
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 7

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Static implementation
l_bool l_flg_tst_fff (void);

Where fff is the name of the flag, e.g. l_flg_tst_RxEngineSpeed ().

Description
Returns a C boolean indicating the current state of the flag specified by the name fff, 
i.e. returns zero if the flag is cleared, non-zero otherwise.

Note
The flag is set when the associated object (signal or frame) is updated by the LIN 
module.

2.3.2 l_flg_clr

Dynamic prototype
void l_flg_clr (l_flag_handle fff);

Static implementation
void l_flg_clr_fff (void);

Where fff is the name of the signal, e.g. l_flg_clr_RxEngineSpeed ().

Description
Sets the current value of the flag specified by the name fff to zero.

2.4 SCHEDULE MANAGEMENT

2.4.1 l_sch_tick

Dynamic prototype
l_u8 l_sch_tick (l_ifc_handle iii);

Static implementation
l_u8 l_sch_tick_iii (void);

Where iii is the name of the interface, e.g. l_sch_tick_MyLinIfc ().

Description
The l_sch_tick function follows a schedule. When a frame becomes due, its transmis-
sion is initiated. When the end of the current schedule is reached, l_sch_tick starts 
again at the beginning of the schedule.

The l_sch_tick must be called individually for each interface within the node, with the 
rate specified in the network configuration file.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 8

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Returns
Non-zero if the next call of l_sch_tick will start the transmission of the frame in the next 
schedule table entry. The return value will in this case be the next schedule table 
entry's number (counted from the beginning of the schedule table) in the schedule 
table. The return value will be in range 1 to N if the schedule table has N entries.  
Zero if the next call of l_sch_tick will not start transmission of a frame.

Notes
l_sch_tick may only be used in the master node.

The call to l_sch_tick will not only start the transition of the next frame due, it will also 
update the signal values for those signals received since the previous call to 
l_sch_tick, i.e. in the last frame on this interface.

See also note on l_sch_set for use of return value.

2.4.2 l_sch_set

Dynamic prototype
void l_sch_set (l_ifc_handle      iii,
                l_schedule_handle schedule,
                l_u8              entry);

Static implementation
void l_sch_set_iii (l_schedule_handle schedule, l_u8 entry);

Where iii is the name of the interface, e.g. l_sch_set_MyLinIfc (MySchedule1, 0).

Description
Sets up the next schedule to be followed by the l_sch_tick function for a certain inter-
face iii. The new schedule will be activated as soon as the current schedule reaches 
its next schedule entry point.

The entry defines the starting entry point in the new schedule table. The value should 
be in the range 0 to N if the schedule table has N entries, and if entry is 0 or 1 the new 
schedule table will be started from the beginning.

Notes
l_sch_set may only be used in the master node.

A possible use of the entry value is in combination with the l_sch_tick return value to 
temporarily interrupt one schedule with another schedule table, and still be able to 
switch back to the interrupted schedule table at the point where this was interrupted. 

A predefined schedule table, L_NULL_SCHEDULE, shall exist and may be used to 
stop all transfers on the LIN cluster.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 9

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.5 INTERFACE MANAGEMENT

2.5.1 l_ifc_init

Dynamic prototype
void l_ifc_init (l_ifc_handle iii);

Static implementation
void l_ifc_init_iii (void);

Where iii is the name of the interface, e.g. l_ifc_init_MyLinIfc ().

Description
l_ifc_init initializes the controller specified by the name iii, i.e. sets up internals such as 
the baud rate. The default schedule set by the l_ifc_init call will be the 
L_NULL_SCHEDULE where no frames will be sent and received.

Notes
The interfaces are all listed by their names in the local description file.

The call to the l_ifc_init () function is the first call a user must perform, before using 
any other interface related LIN API functions, e.g. the l_ifc_connect () or l_ifc_rx ().

2.5.2 l_ifc_connect

Dynamic prototype
l_bool l_ifc_connect (l_ifc_handle iii);

Static implementation
l_bool l_ifc_connect_iii (void);

Where iii is the name of the interface, e.g. l_ifc_connect_MyLinIfc ().

Description
The call to the l_ifc_connect will connect the interface iii to the LIN cluster and enable 
the transmission of headers and data to the bus.

Returns
Zero if the "connect operation" was successful and 
non-zero if the "connect operation" failed

2.5.3 l_ifc_disconnect

Dynamic prototype
l_bool l_ifc_disconnect (l_ifc_handle iii);
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 10

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Static implementation
l_bool l_ifc_disconnect_iii (void);

Where iii is the name of the interface, e.g. l_ifc_disconnect_MyLinIfc ().

Description
The call to the l_ifc_disconnect will disconnect the interface iii from the LIN cluster and 
thus disable the interaction with the other nodes in the cluster.

Returns
Zero if the "disconnect operation" was successful and 
non-zero if the "disconnect operation" failed.

2.5.4 l_ifc_goto_sleep

Dynamic prototype
void l_ifc_goto_sleep (l_ifc_handle iii);

Static implementation
void l_ifc_goto_sleep_iii (void);

Where iii is the name of the interface, e.g. l_ifc_goto_sleep_MyLinIfc ().

Description
l_ifc_goto_sleep commands all slave nodes on the cluster connected to the interface 
to enter sleep mode by issuing the special go-to-sleep-mode-command, see also 
Section 2.5.10.

Notes
l_ifc_goto_sleep may only be used in the master node.

2.5.5 l_ifc_wake_up

Dynamic prototype
void l_ifc_wake_up (l_ifc_handle iii);

Static implementation
void l_ifc_wake_up_iii (void);

Where iii is the name of the interface, e.g. l_ifc_wake_up_MyLinIfc ().

Description
The call transmits a 0xf0 byte on the LIN bus, i.e. a dominant pulse of between 250 µs 
and 5 ms (depending on the configured bit rate). See also Section 5.1 in LIN Protocol 
Specification.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 11

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.5.6 l_ifc_ioctl

Dynamic prototype
l_u16 l_ifc_ioctl (l_ifc_handle iii, l_ioctl_op op, void *pv);

Static implementation
l_u16 l_ifc_ioctl_iii (l_ioctl_op op, void *pv);

Where iii is the name of the interface, e.g. l_ifc_ioctl_MyLinIfc (MyOp, &MyPars).

Description
This function controls protocol and interface specific parameters. The iii is the name of 
the interface to which the operation defined in op should be applied. The pointer pv 
points to an optional parameter block.

Exactly which operations that are supported, depends on the interface type and the 
programmer must therefore refer to the documentation for the specific interface in the 
target binding document. This document will specify what all operations do and the 
value returned.

Notes
The interpretation of the parameter block depends upon the operation chosen. Some 
operations do not need this block. In such cases the pointer pv can be set to NULL. In 
the cases where the parameter block is relevant its format depends upon the inter-
face and, therefore, the interface specification the target binding document must be 
consulted.

2.5.7 l_ifc_rx

Dynamic prototype
void l_ifc_rx (l_ifc_handle iii);

Static implementation
void l_ifc_rx_iii (void);

Where iii is the name of the interface, e.g. l_ifc_rx_MyLinIfc ().

Description
The function shall be called when the interface iii has received one character of data.

It may, for example, be called from a user-defined interrupt handler triggered by a 
UART when it receives one character of data. In this case the function will perform 
necessary operations on the UART control registers.

Notes
The application program is responsible for binding the interrupt and for setting the cor-
rect interface handle (if interrupt is used).
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 12

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.5.8 l_ifc_tx

Dynamic prototype
void l_ifc_tx (l_ifc_handle iii);

Static implementation
void l_ifc_tx_iii(void);

Where iii is the name of the interface, e.g. l_ifc_tx_MyLinIfc ().

Description
The function shall be called when the interface iii has transmitted one character of 
data.

It may, for example, be called from a user-defined interrupt handler triggered by a 
UART when it has transmitted one character of data. In this case the function will per-
form necessary operations on the UART control registers.

Notes
The application program is responsible for binding the interrupt and for setting the cor-
rect interface handle (if interrupt is used).

This function might even be empty in certain implementations, where the transmission 
is coupled to the l_ifc_rx function call. This is described for the user in the target bind-
ing document.

2.5.9 l_ifc_aux

Dynamic prototype
void l_ifc_aux (l_ifc_handle iii);

Static implementation
void l_ifc_aux_iii(void);

Where iii is the name of the interface, e.g. l_ifc_aux_MyLinIfc ().

Description
This function may be used in the slave nodes to synchronize to the BREAK and SYNC 
characters sent by the master on the interface specified by iii.

It may, for example, be called from a user-defined interrupt handler raised upon a 
flank detection on a hardware pin connected to the interface iii.

Notes
l_ifc_aux may only be used in a slave node.

This function is strongly hardware connected and the exact implementation and usage 
is described for the user in the target binding document.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 13

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
This function might even be empty in cases where the BREAK/SYNC detection is 
implemented in the l_ifc_rx function.

2.5.10 l_ifc_read_status

Dynamic prototype
l_u16 l_ifc_read_status (l_ifc_handle iii);

Static implementation
l_u16 l_ifc_read_status_iii(void);

Where iii is the name of the interface, e.g. l_ifc_read_status_MyLinIfc ().

Description
The call returns a 16 bit value, as shown in Table 2.1.

Error in response is set if one (or multiple) frames processed by the node had an error 
in the frame response section, e.g. checksum error, framing error, etc., since the pre-
vious call to l_ifc_read_status.2

Successful transfer is set if one (or multiple) frame responses have been processed 
without an error since the previous call to l_ifc_read_status.

Overrun is set if two or more frames are processed since the previous call to 
l_ifc_read_status. If this is the case, error in response and successful transfer repre-
sent ORed values for all processed frames.

Goto sleep is set if a a go-to-sleep-mode-command has been received since the pre-
vious call to l_ifc_read_status.

Last frame protected identity is the protected identity last detected on the bus and pro-
cessed in the node. If overrun is set one or more values of last frame protected iden-
tity are lost; only the latest value is maintained.

Table 2.1: Return value of l_ifc_read_status (bit 15 is MSB, bit 0 is LSB).
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Last frame protected identity 0 0 0 0 Goto 
sleep Overrun Successful 

transfer
Error in 

response

Note 2: An error in the header results in the header not being recognized and thus, the frame is 
ignored.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 14

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Note
A LIN slave node is required to enter sleep mode after 4 seconds of silence on the 
bus. This can be implemented by the application monitoring the status bits; one sec-
ond of continuous zero readings imply bus silence3.

Example
The l_ifc_read_status is designed to allow reading at a much lower frequency than the 
frame slot frequency, e.g. once every 50 frame slots. In this case, the last frame pro-
tected identity has little use. Overrun is the used as a check that the traffic is running 
as it should, i.e. is shall always be set.

It is, however, also possible to call l_ifc_read_status every frame slot and get a much 
better error statistics; you can see the protected identifier of the failing transfers and 
by knowing the topology, it is possible to draw better conclusion of faulty nodes. This 
is maybe most useful in the master node, but is also possible in any slave node.

The provided information, especially in conjunction with the error_response signals 
described in LIN Protocol Standard (Section 6.3), provides for very detailed car OEM 
specific logging of faulty nodes or wiring.

Implementation notes
Calling l_ifc_read_status twice without any frame transfer in between shall return zero 
in the second call.

Successful transfer shall be set after processing and verifying the checksum of the 
frame.

Error in response shall be set when an error is detected in the frame response pro-
cessing.

Last frame protected identity shall be set simultaneously with successful transfer or 
error in response.

Overrun shall be set if either of successful transfer or error in response is already set 
and the driver needs to set one of them.

An implementation for a master node may set goto sleep when the API call is issued, 
when the go-to-sleep-mode-command has been sent or not at all4.

Note 3: This implies that the master must communicate with all slave nodes at least once a sec-
ond; if nothing else is needed, it should at least poll the receive_error status bit.

Note 4: The reason for this flexibility is that the master node implementation shall not be forced to 
receive its own transmissions.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 15

Core API

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.6 USER PROVIDED CALL-OUTS
The user must provide a pair of functions, which will be called from within the LIN core 
in order to disable all controller interrupts before certain internal operations, and to 
restore the previous state after such operations. These functions are, for example, 
used in the l_sch_tick function.

2.6.1 l_sys_irq_disable

Dynamic prototype
l_irqmask l_sys_irq_disable (void);

Description
The user implementation of this function must achieve a state in which no controller 
interrupts can occur.

2.6.2 l_sys_irq_restore

Dynamic prototype
void l_sys_irq_restore (l_irqmask previous);

Description
The user implementation of this function must restore the state identified by the pro-
vided l_irqmask previous.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 16

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3 NODE CONFIGURATION
The LIN node configuration API has a set of functions all based on the idea to give the 
API a separate name space, in order to minimize the risk of conflicts with existing soft-
ware. All functions and types will have the prefix "ld_" (lowercase "LD" followed by an 
"underscore").

A requirement for LIN node configuration to operate correctly is that the active sched-
ule table contains the two diagnostic frames (master request frame and slave 
response frame) in sequence at least once. If the master does not care about the 
responses (not recommended) it is enough that the master request frame is contained 
in the schedule table.

Note
All calls in the LIN node configuration API are for the master node only. Slave nodes 
manage node configuration automatically.

Any need for initialization shall be automatically performed by the LIN core module 
call l_sys_init.

3.0.1 ld_is_ready

Dynamic prototype
l_bool ld_is_ready (l_ifc_handle iii);

Description
This routine returns true if the diagnostic module for the interface specified is ready for 
a new command. This also implies that the previous command has completed, e.g. 
the response is valid and may be analyzed.

Notes
The call is available in the master only.

You may never issue another node configuration API call unless the previous call has 
completed, i.e. ld_is_ready has returned true.

Implementation notes
ld_is_ready shall be cleared by any imperative call in the API (all calls except 
ld_is_ready or ld_check_response).

ld_is_ready shall be set when the following master request frame and slave response 
frame has been completed (checksum of slave response frame received). If the mas-
ter request frame is not followed by a slave response frame or if the slave does not 
respond, ld_is_ready shall also be set when the next frame slot is being processed.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 17

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
In the last case, the module shall also memorize that the request failed (in case of the 
application calling ld_check_response).

3.0.2 ld_check_response

Dynamic prototype
l_u8 ld_check_response (l_ifc_handle iii,
                        l_u8*        RSID,
                        l_u8*        error_code);

Description
This routine returns the result of the last node configuration call completed. RSID and 
error_code is also returned for a more detailed analysis. The result is interpreted as 
follows:

LD_SUCCESS The call was successfully carried out.

LD_NEGATIVE The call failed, more information can be found by parsing 
error_code.

LD_NO_RESPONSE No response was received on the request.

LD_OVERWRITTEN The slave response frame has been overwritten by another 
operation, i.e. the result is lost5.

Notes
The call is available in the master only.

Implementation note
If the slave does not respond the routine may not respond LD_SUCCESS. However, 
the values of RSID and error_code may be return a successful reply. (This allows for 
the routine to read RSID and error_code directly from the response RAM buffer.)

3.0.3 ld_assign_NAD

Dynamic prototype
void ld_assign_NAD (l_ifc_handle iii,
                    l_u8         NAD,
                    l_u16        supplier_id,
                    l_u16        function_id,
                    l_u8         new_NAD);

Note 5: This can only occur if the cluster uses both node configuration and the diagnostic trans-
port layer, see Section 4.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 18

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Description
This call assigns the NAD (node diagnostic address) of all slave nodes that matches 
the NAD, the supplier identity code and the function identity code. The new NAD of 
those nodes will be new_NAD.

Notes
The call is available in the master only.

LD_BROADCAST, LD_ANY_SUPPLIER and/or LD_ANY_FUNCTION may be used 
in this call (assuming all nodes in the cluster have unique supplier/function id).

The purpose of this call is to change conflicting NADs in LIN clusters built using off-
the-shelves nodes or reused nodes.

3.0.4 ld_assign_frame_id

Dynamic prototype
void ld_assign_frame_id (l_ifc_handle iii,
                         l_u8         NAD,
                         l_u16        supplier_id,
                         l_u16        message_id,
                         l_u8         PID);

Description
This call assigns the protected identifier of a frame in the slave node with the address 
NAD and the specified supplier ID. The frame changed shall have the specified mes-
sage ID and will after the call have PID as the the protected identifier.

Notes
The call is available in the master only.

LD_BROADCAST, LD_ANY_SUPPLIER and/or LD_ANY_MESSAGE may be used in 
this call (assuming all nodes in the cluster have unique supplier/function id).

3.0.5 ld_read_by_id

Dynamic prototype
void ld_read_by_id (l_ifc_handle iii,
                    l_u8         NAD,
                    l_u16        supplier_id,
                    l_u16        function_id,
                    l_u8         id,
                    l_u8* const  data);
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 19

Node configuration

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Description
The call requests the node selected with the NAD to return the property associated 
with the Id parameter. When the next call to ld_is_ready returns true, the RAM area 
specified by data contains between one and five bytes data according to the request.

Notes
The call is available in the master only.

Table 3.1 shows the possible values for Id.

Implementation note
The result is returned in a big-endian style. It is up to little-endian CPUs to swap the 
bytes, not the LIN diagnostic driver. (The reason for using big-endian data is to sim-
plify message routing to a CAN back-bone network.)

3.0.6 ld_conditional_change_NAD

Dynamic prototype
void ld_conditional_change_NAD (l_ifc_handle iii,
                                l_u8         NAD,
                                l_u8         id,
                                l_u8         byte,
                                l_u8         mask,
                                l_u8         invert,
                                l_u8         new_NAD);

Description
This call changes the NAD if the node properties fulfil the test specified by id, byte, 
mask and invert, see LIN Diagnostic Specification.

Id shall be in the range 0 to 31, see Table 3.1, and byte in the range 1 to 5 (specifying 
the byte to use in the id). Mask and Invert shall have values between 0 and 255.

Notes
The call is available in the master only.

Table 3.1: Id that can be read using ld_read_by_id.
Id Interpretation
0 LIN Product Identification
1 Serial number

2 - 15 Reserved
16 - 31 Message ID 1..16
32 - 63 User defined

64 - 255 Reserved
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 20

Diagnostic 
transport layer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
4 DIAGNOSTIC TRANSPORT LAYER
The LIN transport layer API has a set of functions all based on the idea to give the API 
a separate name space, in order to minimize the risk of conflicts with existing soft-
ware. All functions and types will have the prefix "ld_" (lowercase "LD" followed by an 
"underscore").

Use of the LIN diagnostic transport layer API requires knowledge of the underlaying 
protocol. The relevant information can be found in the LIN Diagnostic and Configu-
ration Specification.

LIN diagnostic transport layer is intended to transport ISO diagnostic requests/
responds between a test equipment on a back-bone CAN network to LIN slave nodes 
via the master node. 

Since ISO PDUs on CAN are quite similar to LIN diagnostic frames, a raw API is pro-
vided. The raw API is frame/PDU based and it is up to the application to manage the 
PCI information. The features are that this is simple when the source is CAN based 
ISO PDUs and that the API requires very little resources (RAM and CPU cycles).

An alternative API is message based; provide a pointer to a message buffer and the 
transfer commences and the LIN diagnostic driver will do the packing/unpacking, i.e. 
act as a transport layer. Typically, this is useful in slave nodes since they shall not 
gateway the messages but parse them.

Note
The behavior of the system is undefined in the pathologic case where the application 
tries to process a single frame using both the raw and the cooked API.

4.1 RAW API

Implementation note
The raw API is based on transferring PDUs and it is typically used to gateway PDUs 
between CAN and LIN. If the speed of the networks differ, a FIFO function on transmit 
as well as receive is useful. All implementations of the LIN diagnostic module are 
encouraged to incorporate such FIFOs and to make their size configurable at system 
generation time.

4.1.1 ld_put_raw

Dynamic prototype
void ld_put_raw (l_ifc_handle       iii,
                 const l_u8* const  data);
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 21

Diagnostic 
transport layer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Description
The call queues the transmission of the eight bytes specified byte data.

Notes
The data is sent in the next suitable frame (master request frame for master nodes 
and slave response frame for slave nodes).

Implementation note
The data area must be copied in the call, it is not allowed to memorize the pointer 
only.

If no more queue resources are available, the data may be jettisoned.

4.1.2 ld_get_raw

Dynamic prototype
void ld_get_raw (l_ifc_handle iii,
                 l_u8* const  data);

Description
The call copies the oldest received diagnostic frame to the memory specified by data.

Notes
The data returned is received from suitable frames (master request frame for slave 
nodes and slave response frame for master nodes).

Implementation note
If the receive queue is empty no action shall be taken.

4.1.3 ld_raw_tx_status

Dynamic prototype
l_u8 ld_raw_tx_status (l_ifc_handle iii);

Description
The call returns the status of the raw frame transmission function:

LD_QUEUE_FULL The transmit queue is full and can not accept further 
frames.

LD_QUEUE_EMPTY The transmit queue is empty i.e. all frames put in the 
queue has been transmitted.

LD_TRANSFER_ERROR LIN protocol errors occurred during the transfer; abort 
and redo the transfer.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 22

Diagnostic 
transport layer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Notes
How to perform an abortion of a transfer is not part of the standard.

4.1.4 ld_raw_rx_status

Dynamic prototype
l_u8 ld_raw_rx_status (l_ifc_handle iii);

Description
The call returns the status of the raw frame receive function:

LD_DATA_AVAILABLE The receive queue contains data that can be read.

LD_TRANSFER_ERROR LIN protocol errors occurred during the transfer; abort 
and redo the transfer.

Notes
How to perform an abortion of a transfer is not part of the standard.

4.2 COOKED API

Implementation note
Cooked processing of diagnostic messages manages one message at a time. There-
fore, it is not needed to implement a message FIFO, nor to copy the messages 
between the application buffer and a buffer internal in the diagnostic module.

4.2.1 ld_send_message

Dynamic prototype
void ld_send_message (l_ifc_handle      iii,
                      l_u16             length,
                      l_u8              NAD,
                      const l_u8* const data);

Description
The call packs the information specified by data and length into one or multiple diag-
nostic frames. If the call is made in a master node the frames are sent to the node with 
the address NAD (slave nodes send them to the master).

Notes
SID (or RSID) shall be the first byte in the data area and it shall be included in the 
length. Length must be in the range 1 to 4095 bytes.

The parameter NAD is not used in slave nodes but included to make a common API.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 23

Diagnostic 
transport layer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
The call shall return immediately, i.e. not suspend until the message has been sent, 
and the buffer may not be changed by the application as long as calls to ld_tx_status 
returns LD_IN_PROGRESS.

The data is sent as frame responses to the succeeding suitable frames headers (mas-
ter request frame for master nodes and slave response frame for slave nodes).

The call is not legal if the previous transmission is still in progress.

4.2.2 ld_receive_message

Dynamic prototype
void ld_receive_message (l_ifc_handle iii,
                         l_u16*       length,
                         l_u8*        NAD,
                         l_u8* const  data);

Description
The call prepares the LIN diagnostic module to receive one message and store it in 
the buffer pointed to by data. At the call length shall specify the maximum length 
allowed. When the reception has completed, length is changed to the actual length, 
NAD to the NAD in the message (applies to master nodes only).

Notes
SID (or RSID) will be the first byte in the data area and it is included in the length. 
Length will be in the range 1 to 4095 bytes, but never more than the value originally 
set in the call.

The parameter NAD is not used in slave nodes but included to make a common API.

The call shall return immediately, i.e. not suspend until the message has been 
received, and the buffer may not be changed by the application as long as calls to 
ld_rx_status returns LD_IN_PROGRESS. If the call is made “too late”, i.e. after the 
message transmission has commenced, the call will wait for the next message.

The data is received from the succeeding suitable frames (master request frame for 
slave nodes and slave response frame for master nodes).

The call is not legal if the previous transmission is still in progress, i.e ld_rx_status 
returns LD_IN_PROGRESS.

4.2.3 ld_tx_status

Dynamic prototype
l_u8 ld_tx_status (l_ifc_handle iii);
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 24

Diagnostic 
transport layer

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Description
The call returns the status of the last made call to ld_send_message. The following 
values can be returned:

LD_IN_PROGRESS The transmission is not yet completed.

LD_COMPLETED The transmission has completed successfully (and 
you can issue a new ld_send_message call).

LD_FAILED The transmission ended in an error. The data was 
only partially sent. (You can make a new call to 
ld_send_message.)

Note
To find out why a transmission has failed, check the status management functions in 
LIN core.

4.2.4 ld_rx_status

Dynamic prototype
l_u8 ld_rx_status (l_ifc_handle iii);

Description
The call returns the status of the last made call to ld_receive_message. The following 
values can be returned:

LD_IN_PROGRESS The reception is not yet completed.

LD_COMPLETED The reception has completed successfully and all 
information (length, NAD, data) is available. (You can 
also issue a new ld_receive_message call).

LD_FAILED The reception ended in an error. The data was only 
partially received and should not be trusted. (You can 
make a new call to ld_receive_message.)

Note
To find out why a reception has failed, check the status management functions in LIN 
core.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 25

Examples

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
5 EXAMPLES
In the following chapters a very simple example is given in order to show how the API 
can be used. The C application code is shown as well as the LIN description file.

5.1 LIN CORE API USAGE
/**********************************************************************
*         File: hello.c
*       Author: Christian Bondesson
*  Description: Example code for using the LIN API in a LIN master node
*               NOTE! This example uses the static API
*/

#include "lin.h"

/********************************************************************** 
*   PROCEDURE : l_sys_irq_restore
* DESCRIPTION : Restores the interrupt mask to the one before the call to
*               l_sys_irq_disable was made
*          IN : previous - the old interrupt level
*/
void l_sys_irq_restore (l_imask previous)
{
   /* Some controller specific things... */
} /* l_sys_irq_restore */

/**********************************************************************
*   PROCEDURE : l_sys_irq_disable
* DESCRIPTION : Disable all interrupts of the controller and returns the
*               interrupt level to be able to restore it later
*/
l_imask l_sys_irq_disable (void)
{
  /* Some controller specific things... */
} /* l_sys_irq_disable */

/**********************************************************************
*   INTERRUPT : lin_char_rx_handler
* DESCRIPTION : LIN recieve character interrupt handler for the 
* interface named LIN_ifc
*/
void INTERRUPT lin_char_rx_handler (void)
{
  /* Just call the LIN API provided function to do the actual work */
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 26

Examples

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
  l_ifc_rx_MyLinIfc ();
} /* lin_char_rx_handler */

/**********************************************************************
*   INTERRUPT : lin_char_tx_handler
* DESCRIPTION : LIN transmit character interrupt handler for the
*               interface named LIN_ifc
*/
void INTERRUPT lin_char_tx_handler (void)
{
  /* Just call the LIN API provided function to do the actual work */
  l_ifc_tx_MyLinIfc ();
} /* lin_char_tx_handler */

/**********************************************************************
*   PROCEDURE : main 
* DESCRIPTION : Main program... initialization part
*/
void main (void)
{
  /* Initialize the LIN interface */
  if (l_sys_init ())
  {
    /* The init of the LIN software failed */
  }
  else
  {
    l_ifc_init_MyLinIfc ();      /* Initialize the interface             */
    if (l_ifc_connect_MyLinIfc ())
    {
      /* Connection of the LIN interface failed */
    }
    else
    {
      /* Connected, now ready to send/receive set the normal 
       * schedule to run from beginning for this specific interface */
      l_sch_set_MyLinIfc (MySchedule1, 0);
    }
  }
  start_main_application (); /* Ready with init, start actual applic */
} /* main */

/* 10 ms based on the minimum LIN tick time, in LIN description file... */
void main_application_10ms (void)
{
  /* Do some application specific stuff... */
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 27

Examples

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
  /* Just a small example of signal reading and writing */
  if (l_flg_tst_RxInternalLightsSwitch ())
  {
    l_u8_wr_InternalLightsRequest (l_u8_rd_InternalLightsSwitch());
    l_flg_clr_RxInternalLightsSwitch ();
  }
  /* In-/output of signals, do not care about the return value, as we
   * will never switch schedule anyway... */
  (void) l_sch_tick_MyLinIfc();
} /* main_application_10ms */

5.2 LIN DESCRIPTION FILE
/**********************************************************************
*         File: hello.ldf
*       Author: Christian Bondesson
*  Description: The LIN description file for the example program 
*/

LIN_description_file ;
LIN_protocol_version = "2.0";
LIN_language_version = "2.0";
LIN_speed = 19.2 kbps;

Nodes {
    Master: CEM, 5 ms, 0.1 ms;
    Slaves: LSM;
}

Signals {
    InternalLightsRequest: 2, 0, CEM, LSM;
    InternalLightsSwitch: 2, 0, LSM, CEM;
}

Frames {
    VL1_CEM_Frm1: 1, CEM {
        InternalLightsRequest, 0;
    }
    VL1_LSM_Frm1: 2, LSM {
        InternalLightsSwitch, 0;
    }
}

Schedule_tables {
    MySchedule1 {
        VL1_CEM_Frm1 delay 15 ms;
        VL1_LSM_Frm1 delay 15 ms;
    }
}

Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN API Specification
Revision 2.0

September 23, 2003; Page 28

Examples

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Signal_encoding_types {
  Dig2Bit {
        logical_value, 0, "off";
        logical_value, 1, "on";
        logical_value, 2, "error";
        logical_value, 3, "void";
    }
}

Signal_representations {
  Dig2Bit: InternalLightsRequest, InternalLightsSwitch;
}

Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 1

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
LIN
Node Capability Language Specification

Revision 2.0

This specification is provided on an "AS IS" basis only and cannot be the basis for any 
claims. 

© LIN Consortium, 2003.  
All rights reserved. The unauthorized copying, displaying or other use of any content 
from this document is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®.

All distributions are registered.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 2

Introduction

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
1 INTRODUCTION
The intention of a LIN Node capability language is to be able to describe the possibili-
ties of a slave node in a standardized, machine readable syntax. 

The availability of pre-made off-the-shelf slave nodes is expected to grow in the next 
years. If they are all accompanied by a node capability file, it will be possible to gener-
ate both the LIN configuration file, see LIN Configuration Language Specification, 
and initialization code1 for the master node.

If the setup and configuration of any LIN cluster is fully automatic, a great step 
towards plug-and-play development with LIN will be taken. In other words, it will be 
just as easy to use distributed nodes in a LIN cluster as a single CPU node with the 
physical devices connected directly to the node.

1.1 PLUG AND PLAY WORKFLOW
Figure 1.1 shows the development of a LIN cluster split in three areas; design, debug-
ging and the LIN physical system. This specification focuses on the design phase.

Figure 1.1: Development of a LIN cluster.

1.1.1 System Generation
The core description file of a LIN cluster is the LIN description file, LDF. Based on this 
file it is possible to generate communication drivers of all nodes in the cluster, a pro-
cess named system generation. All signals and frames of the cluster are declared in 
this file.

Note 1: The code shall configure the cluster, e.g. reconfigure conflicting identifiers.

LIN Description

System Defining 
Tool

Node Capability Files

File

LIN

System
Generator

Bus analyzer and 
emulator

Design

System Debugging

MasterSlave3Slave2Slave1
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 3

Introduction

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
1.1.2 System Definition
The process of creating the LDF file is named system definition. When you design a 
completely new cluster, writing the LDF file (by hand or with computer aid) is an effi-
cient way to define the communication of your cluster.

However, when you have existing slave nodes and want to create a cluster of them 
starting from scratch is not that convenient. This is especially true if the defined sys-
tem contains node address conflicts or frame identifier conflicts.

By receiving a node capability file, NCF, with every existing slave node, the system 
definition step is automatic: Just add the NCF files to your project in the system defini-
tion tool and it produces the LDF file.

If you want to create new slave nodes as well, (Slave3 in Figure 1.1) the process 
becomes somewhat more complicated. The steps to perform depend of the system 
definition tool being used, which is not part of the LIN specification. A useful tool will 
allow for entering of additional information before generating the LDF file. (It is always 
possible to write a fictive NCF file for the non-existent slave node and thus, it will be 
included.)

It is worth noticing that the generated LDF file reflects the configured network; any 
conflicts originally between nodes or frames must have been resolved before activat-
ing the cluster traffic.

1.1.3 Debugging
Debugging and node emulation is based on the LDF file produced in the system defi-
nition. Thus, the monitoring will work just as in earlier versions of the LIN specification.

Emulation of the master adds the requirement that the cluster must be configured to 
be conflict free. Hence, the emulator tool must be able to read reconfiguration data 
produced by the system definition tool.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 4

Node capability file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2 NODE CAPABILITY FILE DEFINITION
node_capability_file ;
<language_version>
[<node_definition>]

2.1 GLOBAL DEFINITION
Global definition data defines general properties of the file.

2.1.1 Node capability language version number definition
<language_version> ::=
LIN_language_version = char_string ;

Shall be in the range of "0.01" to "99.99". This specification describes version 2.0.

2.2 NODE DEFINITION
<node_definition> ::=
node <node_name> {
  <general_definition>
  <diagnostic_definition>
  <frame_definition>
  <status_management>
  (<free_text_definition>)
}
<node_name> ::= identifier

If a node capability file contains more than one node, the node_name shall be unique 
within the file. The declared nodes shall be seen as classes (templates) for physical 
node instances.

The properties of a node_definition are defined in the following sections.

2.3 GENERAL DEFINITION
<general_definition> ::= 
general {
  LIN_language_version = <protocol_version> ;
  supplier = <supplier_id> ;
  function = <function_id> ;
  variant = <variant_id> ;
  bitrate = <bitrate_definition> ;
  (volt_range = real_or_integer, real_or_integer ;)
  (temp_range = real_or_integer, real_or_integer ;)
  (conformance = char_string ;)
}

The general_definition declare the properties that specify the general compatibility 
with the cluster.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 5

Node capability file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.3.1 LIN protocol version number definition 
<protocol_version> ::= char_string ;

This specifies the protocol used by the node and it shall be in the range of "0.01" to 
"99.99". At the time of publishing this is 2.0.

2.3.2 LIN Product Identification
<supplier_id> ::= integer
<function_id> ::= integer
<variant_id>  ::= integer

The supplier_id is assigned to each LIN consortium member as a 16 bit number. The 
function_id is a 16 bit number assigned to the product by the supplier to make it 
unique. Finally, variant_id is an 8 bit value specifying the variant (see LIN Diagnostic 
and Configuration Specification, Section 2.4).

2.3.3 Bit rate
<bitrate_definition> ::=
automatic (min <bitrate>) (max <bitrate>) |
select {<bitrate> [, <bitrate>]} |
<bitrate>

Three kinds of bitrate_definition are possible:

• automatic, the node can adopt to any legal bit rate used on the bus. If the 
words min and/or max is added any bit rate starting from/up to the provided bit 
rate can be used.

• select, the node can detect the bit rate if one of the listed bit rates are used, 
otherwise it will fail.

• fixed, only one bit rate can be used.

Manufacturers of standardized, off-the-shelf, nodes are encouraged to build automatic 
nodes since this gives the most flexibility to the cluster builder.

<bitrate> ::= integer

The fixed bit rates are specified as an integer in the range 1000 to 20000 (bit/s).

2.3.4 Non-network parameters
The optional specifications of volt_range and temp_range specifies the minimum and 
maximum values allowed for the node i Volt and Celcius, respectively. Finally, con-
formance specifies if the slave node has passed a conformance test procedure; it 
shall be either “LIN2.0” or “none”.

2.4 DIAGNOSTIC DEFINITION
<diagnostic_definition> ::=
diagnostic {
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 6

Node capability file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
  NAD = integer (, <integer>) ;
  [ P2_min = integer ms; ]
  [ ST_min = integer ms; ]
  [ support_sid {<sid> ([, <sid>]) }; ]
  [ max_message_length = integer ; ]
}

The diagnostic_definition specifies the properties for diagnostic and configuration.

The NAD property defines the initial node address; it shall be according to LIN Diag-
nostic and Configuration Specification, Section 2.3.2. If two values are given, the 
slave will dynamically select one of the values within the range based on a physical 
property.

P2_min specifies the minimum time between a master request frame and the follow-
ing slave response frame for the node to be able to prepare the response. Default 
0 ms.

ST_min specifies the minimum time between two slave response frames in a multi-
PDU response, i.e. it only applies to the diagnostic transport layer. Default 0 ms.

The max_message_length property applies to the diagnostic transport layer only; it 
defines the maximum length of a diagnostic message. Default: 4095.

support_sid lists all SID values that are supported by the node. Default: {0xb1, 0xb2}.

Implementation note
Future versions of this specification may add new properties to the 
diagnostic_definition. The intention is to follow the structure <property> = value or 
<property> { <list_of_entities> }.

2.5 FRAME DEFINITION
<frame_definition> ::= 
frames {
  [ <single_frame> ]
}

All frames published or subscribed by the node shall be listed in this declaration2.
<single_frame> ::=
<frame_kind> <frame_name> {
  <frame_properties>
  (<signal_definition>)
}
<frame_kind> ::= publish | subscribe
<frame_name> ::= identifier

Note 2: With the exception of diagnostic frames and user-defined frames.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 7

Node capability file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Each frame published or subscribed is declared as defined above. frame_name is the 
symbolic3 name of the frame. Of course, published frames shall start with frame_kind 
publish and subscribed with subscribe.

2.5.1 Frame properties
<frame_properties> ::=
message_ID = integer ;
length = integer ;
( min_period = integer ms ; )
( max_period = integer ms ; )
( event_triggered_message_ID = integer ; )

message_ID defines the message identifier of the frame (0 to 0xFFFF) and length the 
frame length (1 to 8).

The optional values for min_period and max_period are used to guide the tool in gen-
eration of the schedule table. Both values are specified in milliseconds.

The event_triggered__message_ID is also optional and it provides a secondary mes-
sage ID for publishing of an event triggered frame.

Note
Several restrictions apply when a frame is also event triggered, see LIN Protocol 
Specification.

2.5.2 Signal definition
<signal_definition> ::=
signals {
  [<signal_name> {  <signal_properties> } ]
}
<signal_name> ::= identifier

All frames (except diagnostic frames) carry signals, which are declared in according to 
the signal_definition.

<signal_properties> ::=
  <init_value> ;
  size = integer ;
  offset = integer ;
  (<encoding> ;)
<init_value> ::=
  init_value = integer | init_value = { integer ([, integer ]) }

The init_value specifies the value used for the signal from power on until first set by 
the publishing application. The size is the number of bits reserved for the signal and 
the offset specifies the position of the signal in the frame (number of bits in offset from 
the first bit in the frame).

Note 3: A system definition tool can use the name directly for a physical frame, unless more than 
one instance of the node defined is used in the cluster.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 8

Node capability file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
For a byte array, both size and offset must be multiples of eight. Encoding does not 
apply for byte arrays.

Note
The only way to describe if a signal with size 8 or 16 is a byte array with one or two 
elements or a scalar signal is by analyzing the init_value, i.e. the curly paranthesis are 
very important to distinguish between arrays and scalar values.

2.5.3 Signal encoding type definition
The encoding is intended for providing representation and scaling properties of sig-
nals.

<encoding> ::=
encoding <encoding_name> {
  [<logical_value>  |
   <physical_range> |
   <bcd_value>      |
   <ascii_value>]
}
<encoding_name> ::= identifier
<logical_value>  ::= logical_value, <signal_value> (,<text_info>) ;
<physical_range> ::= physical_value, <min_value>, <max_value>, <scale>,
                     <offset> (,<text_info>) ;
<bcd_value>      ::= bcd_value ;
<ascii_value>    ::= ascii_value ;
<signal_value>   ::= integer
<min_value>      ::= integer
<max_value>      ::= integer
<scale>          ::= real_or_integer
<offset>         ::= real_or_integer 
<text_info>      ::= char_string

The signal_value the min_value and the max_value shall be in range of 0 to 65535. 
The max_value shall be greater than or equal to min_value. If the raw value is within 
the range defined by the min and max value, the physical value shall be calculated as 
in (1).

physical_value = scale * raw_value + offset. (1)

2.6 STATUS MANAGEMENT
<status_management> ::=
  status_management {
    error_response = <published_signal> ;
  }
<published_signal> ::= identifier

The status_management section specifies which published signal the master node 
shall monitor to know if the slave node is operating as expected.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 9

Node capability file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Note
Status management is separated from the general_definition in order to always have 
declarations precede usage, i.e. the signal has to be declared before being specified 
as the error_response signal.

2.7 FREE TEXT DEFINITION
<free_text_definition> ::=
free_text {
    <anything_but_right_curly_paranthesis>
  }

The free_text_definition is used to bring up help text, limitations, etc., in the system 
definition tool, if desired. The only limitation of its contents is that the ´}´ character may 
not be used.

Note
Recommended information to provide in the free text definition is:

• Node purpose and physical world interaction, e.g. motor speed, power 
consumption etc.

• Node availability.

• Deviations from the LIN standard, i.e. un-implemented functionality.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 10

Overview of Syntax

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3 OVERVIEW OF SYNTAX
The syntax is described using a modified BNF (Bachus-Naur Format), as summarized 
in Table 3.1 below.

Within files using this syntax, comments are allowed anywhere. The comment syntax 
is the same as that for C++ where anything from // to the end of a line and anything 
enclosed in /* and */ delimiters shall be ignored.

Table 3.1: BNF syntax used in this document.
Symbol Meaning

::= A name on the left of the ::= is expressed using the syntax on its right
<> Used to mark objects specified later

| The vertical bar indicates choice. Either the left-hand side or the right hand side of the verti-
cal bar shall appear

Bold The text in bold is reserved - either because it is a reserved word, or mandatory punctuation
[ ] The text between the square brackets shall appear once or multiple times
( ) The text between the parenthesis are optional, i.e. shall appear once or zero times

char_string Any character string enclosed in quotes "like this"

identifier An identifier. Typically used to name objects. Identifiers shall follow the normal C rules for 
variable declaration

integer An integer. Integers can be in decimal (first digit is the range 1 to 9) or hexadecimal (prefixed 
with 0x)

real_or_integer A real or integer number. A real number is always in decimal and has an embedded decimal 
point.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Node Capability
Revision 2.0

September 23, 2003; Page 11

Example file

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
4 EXAMPLE FILE
node_capability_file;
LIN_language_version = 2.0;

node step_motor {
  general {
    LIN_protocol_version = 2.0;
    supplier = 0x0011;
    function = 0x1234;
    variant = 1;
    bitrate = automatic max 10400;
    volt_range = 8.0, 15.0;
  }
  diagnostic {
    NAD = 1, 3;
    P2_min = 40 ms;
    support_sid {0xb0, 0xb1, 0xb2};
  }
  frames {
    publish node_status {
      message_ID = 0x1001;
      length = 2;
      min_period = 10 ms;
      max_period = 100 ms;
      signals {
        state {init_value = 0; size = 8; offset = 0;}
        error_bit {init_value = 0; size = 1; offset = 8;}
      }
    }
    subscribe control {
      message_ID = 0x1002;
      length = 1;
      max_period = 100 ms;
      signals {
        command {init_value = 0; size = 8; offset = 0;
                 encode position {physical_value 0, 199, 1.8, 0, deg;}; }
      }
    }
  }
  status_management { error_response = error_bit; }
  free_text {
    The step_motor command signal shall be in the range 0 to 199, or 
    the command will be ignored.
  }
}

Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 1

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
LIN
Configuration Language Specification

Revision 2.0

This specification is provided on an "AS IS" basis only and cannot be the basis for any 
claims. 

© LIN Consortium, 2003.  
All rights reserved. The unauthorized copying, displaying or other use of any content 
from this document is a violation of the law and intellectual property rights.

LIN is a registered Trademark ®.

All distributions are registered.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 2

Introduction

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
1 INTRODUCTION
The language described in this document is used in order to create a LIN description 
file. The LIN description file describes a complete LIN network and also contains all 
information necessary to monitor the network. This information is sufficient to make a 
limited emulation of one or multiple nodes if it/they are not available.

The LIN description file can be one component used in order to write software for an 
electronic control unit which shall be part of the LIN network. An application program 
interface has been defined, see LIN API Specification, in order to have a uniform 
way to access the LIN network from within different application programs. However, 
the functional behavior of the application program is not addressed by the LIN 
description file.

The syntax of a LIN description file is simple enough to be entered manually, but the 
development and use of computer based tools is encouraged. Node capability files, as 
described in LIN Node Capability Language Specification, provides one way to 
(almost) automatically generate LIN description files. The same specification also 
gives an example of a possible workflow in development of a LIN cluster.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 3

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2 LIN DESCRIPTION FILE DEFINITION
<LIN_description_file> ::=
LIN_description_file ;
<LIN_protocol_version_def>
<LIN_language_version_def>
<LIN_speed_def>
<Node_def>
(<Node_composition_def>)
<Signal_def>
(<Diag_signal_def>)
(<Dynamic_frame_def>)
<Frame_def>
(<Sporadic_frame_def>)
(<Event_triggered_frame_def>)
(<Diag_frame_def>)
<Node_attributes_def>
<Schedule_table_def>
(<Signal_groups_def>)
(<Signal_encoding_type_def>)
(<Signal_representation_def>)

The overall syntax of a LIN description file shall be as above.

2.1 GLOBAL DEFINITION
Global definition data defines general properties of the LIN cluster.

2.1.1 LIN protocol version number definition 
<LIN_protocol_version_def> ::=
LIN_protocol_version = char_string ;

Shall be in the range of "0.01" to "99.99". At the time of publishing this is 2.0.

2.1.2 LIN language version number definition
<LIN_language_version_def> ::=
LIN_language_version = char_string ;

Shall be in the range of "0.01" to "99.99". This specification describes version 2.0.

2.1.3 LIN speed definition
<LIN_speed_def> ::=
LIN_speed = real_or_integer kbps ;

Shall be in the range of 1.00 to 20.00 kilobit/second.

2.2 NODE DEFINITION
The node definition sections identifies the name of all participating nodes as well as 
specifying time base and jitter for the master. The definitions in this section creates a 
node identifier set. All identifiers in this set shall be unique.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 4

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.2.1 Participating nodes
<Node_def >::=
Nodes {
  Master:<node_name>, <time_base> ms, <jitter> ms ;
  Slaves:<node_name>([, <node_name>]) ; 
}
<node_name> ::= identifier

All node_name identifiers shall be unique within the node identifier set.

The node_name identifier after the Master reserved word specifies the master node. 
  <time_base> ::= real_or_integer

The time_base value specifies the used time base in the master node to generate the 
maximum allowed frame transfer time. The time base shall be specified in millisec-
onds.

  <jitter> ::= real_or_integer

The jitter value specifies the differences between the maximum and minimum delay 
from time base start point to the frame header sending start point (falling edge of 
BREAK signal). The jitter shall be specified in milliseconds. (For more information on 
time_base and jitter usage see the Schedule_tables sub-class definition.)

2.2.2 Node attributes
Node attributes provides all necessary information on the behaviour of a single node.

<Node_attributes_def> ::=
Node_attributes {
  [<node_name> {
    LIN_protocol = <protocol_version> ;
    configured_NAD = <diag_address> ;
    (product_id = <supplier_id>, <function_id>, <variant> ; )
    (response_error = <signal_name> ; )
    (P2_min = <real_or_interger> ms ; )
    (ST_min = <real_or_interger> ms ; )
    (configurable_frames {
      [ <frame_name> = <message_id> ; ]
    } )
  }]
}
<node_name>   ::= identifier
<protocol_version> ::= 1.2 | 1.3 | 2.0
<supplier_id> ::= integer
<function_id> ::= integer
<variant>     ::= integer
<message_id>  ::= integer

All optional clauses are refer to LIN 2.0 only, i.e. they shall not be used for LIN 1.2/1.3.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 5

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
All node_name identifiers shall exist within the node identifier set and refer to a slave 
node. supplier_id shall be in the range 0 .. 0x7FFE, function_id in the range 
0 .. 0xFFFE, variant in the range 0 .. 255 and message_id in the range 0 ..0xFFFE.

<signal_name> ::= identifier

All signal_name identifiers shall exist within the signal identifier set and refer to a one 
bit standard signal, see Section 2.3.1. The signal shall be published by the specified 
node. Refer to status management in LIN Protocol Specification for more informa-
tion.

<diag_addr> ::= integer

The diag_addr specifies the diagnostic address for the identified node in the range of 
1 to 127 as further defined in LIN Diagnostic and Configuration Specification. It 
shall specify the unique NAD used for the node after resolving any cluster conflicts, 
i.e. it shall be unique within the cluster.

Configurable frames shall list all frames processed by the node and their associated 
message identity. This section applies to LIN 2.0 nodes only (not to LIN 1.3).

2.2.3 Node composition definition
The LDF file is describing the functionality of nodes from communication point of view 
and by default each such a “functional node” is a physical (real) node as well. It is pos-
sible, however, to express that physical nodes are composed of functional nodes. The 
purpose of this clause is to allow a single master node software to handle multiple 
node configurations without changes.

<Node_composition_def> ::=
composite {
  [ configuration <configuration_name> {
    [<composite_node> {
      <functional_node> ([ , <functional_node> ])
    } ]
  } ]
}
<configuration_name> ::= identifier
<composite_node> ::= identifier
<functional_node> ::= identifier

If this clause is used all composite nodes must be listed in Section 2.2.1 and 
Section 2.2.2 while signals and frames (Section 2.3.1 and Section 2.4.2) shall be pub-
lished or subscribed by functional nodes only.

All composite_node identifiers and functional_node identifiers must be unique within 
the node identifier set.

A physical cluster is statically built according to one of the configuration_names.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 6

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.3 SIGNAL DEFINITION
The signal definition sections identifies the name of all signals in the cluster and their 
properties. The definitions in this section creates a signal identifier set. All identifiers in 
this set shall be unique.

2.3.1 Standard signals
<Signal_def> ::=
Signals {
  [<signal_name>: <signal_size>, <init_value>, <published_by>
    [,<subscribed_by>];]
}
<signal_name> ::= identifier

All signal_name identifiers shall be unique within the signal identifier set.
<signal_size> ::= integer

The signal_size specifies the size of the signal. It shall be in the range 1 to 16 bits for 
scalar signals and 8, 16, 24, 32, 40, 48, 56 or 64 for byte array signals.

<init_value> ::= integer | { integer ([ , integer ]) }

The init_value specifies the signal value that shall be used by all subscriber nodes 
until the frame containing the signal is received. The same initial signal value shall be 
sent from the publisher node until the application program has updated the signal. Of 
course, the vectorized representation is used for byte array signals.

Note
The only way to describe if a signal with size 8 or 16 is a byte array with one or two 
elements or a scalar signal is by analyzing the init_value, i.e. the curly parenthesis are 
very important to distinguish between arrays and scalar values.

<published_by>  ::= identifier
<subscribed_by> ::= identifier

The published_by identifier and the subscribed_by identifier shall all exist in the node 
identifier set.

2.3.2 Diagnostic signals
<Diagnostic_signal_def> ::=
Diagnostic_signals {
  MasterReqB0:8,0;
  MasterReqB1:8,0;
  MasterReqB2:8,0;
  MasterReqB3:8,0;
  MasterReqB4:8,0;
  MasterReqB5:8,0;
  MasterReqB6:8,0;
  MasterReqB7:8,0;
  SlaveRespB0:8,0;
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 7

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
  SlaveRespB1:8,0;
  SlaveRespB2:8,0;
  SlaveRespB3:8,0;
  SlaveRespB4:8,0;
  SlaveRespB5:8,0;
  SlaveRespB6:8,0;
  SlaveRespB7:8,0;
}

Diagnostic signals have a separate section in the LIN description file due to the fact 
that the publisher/subscriber information does not apply here.

2.3.3 Signal groups
The group definition was a feature of LIN 1.3. Use of signal groups is deprecated and 
the following syntactical definition does not affect a LIN 2.0 cluster.

<Signal_groups_def> ::=
Signal_groups {
  [<signal_group_name>:<group_size> {
    [<signal_name>,<group_offset> ;] 
  }]
}
<signal_group_name> ::= identifier
<group_size>        ::= integer
<signal_name>       ::= identifier
<group_offset>      ::= integer

2.4 FRAME DEFINITION
The frame definition sections identifies the name of all frames in the cluster as well as 
their properties. The definitions in this section creates a frame identifier set (their sym-
bolic name) and an associated frame ID set (the LIN frame identifier). All members in 
these sets shall be unique.

2.4.1 Dynamic frame ids
<Dynamic_frame_def> ::=
dynamic_frames { <frame_id> [, <frame_id> ] }

The dynamic frame definition is used to specify the frame identifiers that are allowed 
to be non-unique, i.e. multiple frames can use the same frame identifier, see 
Section 2.4.2.

2.4.2 Unconditional frames
<Frame_def> ::=
Frames {
    [<frame_name>:<frame_id>,<published_by>(,<frame_size>) {
        [<signal_name>,<signal_offset>;]
    }]
}

Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 8

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
<frame_name> ::= identifier

All frame_name identifiers shall be unique within the frame identifier set.
<frame_id> ::= integer

The frame_id specifies the frame ID number in range 0 to 59 or 62. The ID shall be 
unique for all frames within the frames ID set unless the frame_id is listed in the 
dynamic frame definition, see Section 2.4.1.

<published_by> ::= identifier

The published_by identifier shall exist in the node identifier set. 
<frame_size> ::= integer

The frame_size is an optional item, it specifies the size of the frame in range 1 to 8 
bytes. If the frame_size specification not exists the size of the frame shall be based on 
the frame ID according to Table 2.1. The frame_size is optional to be backwards com-
patible but you are encouraged to provide the value, even if it matches the default 
value.

<signal_name> ::= identifier

The signal_name identifier shall exist in the signal identifier set.

All signals within one frame definition, shall be published by the same node as speci-
fied in the published_by identifier for that frame.

<signal_offset> ::= integer

The signal_offset value specifies the least-significant bit position of the signal in the 
frame. This value is in the range of 1 to (8 * frame_size - 1). The least significant bit of 
the signal is transmitted first.

Example
Table 2.2 below shows a ten bit signal packed in a frame with a four byte data field. 
The LSB of S is at offset 16 and the MSB is at offset 25. Note that the figure is drawn 
as the bytes are transmitted (LSB first).

Table 2.1: Default frame lengths
ID range Frame length

0 - 31 (0x1f) 2
32 (0x20) - 47 (0x2f) 4
48 (0x30) - 63 (0x3f) 8

Table 2.2: Packing of a signal.
Byte 0 Byte 1 Byte 2 Byte 3

S S S S S S S S S S
0 7 8 15 16 23 24 31

Transmitted first Transmitted last
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 9

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
The only rule for signal packing within a frame is that maximum one byte boundary 
may be crossed by a signal1.

2.4.3 Sporadic frames
<Sporadic_frame_def> ::=
Sporadic_frames {
  [<sporadic_frm_name>:<frame_name>([,<frame_name>]);]
}
<sporadic_frm_name> ::= identifier

All sporadic_frm_name identifiers shall be unique within the frame identifier set.
<frame_name> ::= identifier

All frame_name identifiers shall exist in the frame identifier set and refer to uncondi-
tional frames. In the case that more than one of the declared frames needs to be 
transferred, the one first listed shall be chosen.

All frame_name identifiers shall either be published by the master or be associated 
with an event_trig_frm_name, Furthermore, they shall not be included directly in the 
same schedule table as the sporadic_frm_name.

2.4.4 Event triggered frames
<Event_triggered_frame_def> ::=
Event_triggered_frames {
    [<event_trig_frm_name>:<frame_id>[,<frame_name>];]
}
<event_trig_frm_name> ::= identifier

All event_trig_frm_name identifiers shall be unique within the frame identifier set.
<frame_id> ::= integer

The frame_id specifies the frame ID number in range 0 to 59. The ID shall be unique 
for all frames within the frames ID set.

<frame_name> ::= identifier

All frame_name identifiers shall exist in the frame identifier set and refer to uncondi-
tional frames. In the case of a collision, the list of frame_name will be transferred 
instead of the event_trig_frm_name in the sequence they are listed in the declaration.

Note 1: Signal packing/unpacking is implemented more efficient in software based nodes if sig-
nals are byte aligned and/or if they do not cross byte boundaries.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 10

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
For all frame_name identifiers declared with one event_trig_frm_name, the following 
shall apply:

• they shall use the same checksum model, i.e. the same LIN protocol standard 
(LIN 2.0 or LIN 1.3),

• they shall be published by different slave nodes in the cluster,

• they shall be of equal length, in the range 1 to 8 bytes,

• the first byte of the frame shall not carry any signals,

• they shall not be included directly in the same schedule table as the 
event_trig_frm_name.

Remark
The first byte of the frame carries the protected identifier of the associated frame and, 
hence, cannot be used for other purposes. 

2.4.5 Diagnostic frames
<Diag_frame_def> ::=
Diagnostic_frames {
   MasterReq : 60 {
      MasterReqB0,0;
      MasterReqB1,8;
      MasterReqB2,16;
      MasterReqB3,24;
      MasterReqB4,32;
      MasterReqB5,40;
      MasterReqB6,48;
      MasterReqB7,56;
   }
   SlaveResp : 61 {
      SlaveRespB0,0;
      SlaveRespB1,8;
      SlaveRespB2,16;
      SlaveRespB3,24;
      SlaveRespB4,32;
      SlaveRespB5,40;
      SlaveRespB6,48;
      SlaveRespB7,56;
   }
}

The MasterReq and SlaveResp reserved frame names are identifying the diagnostic 
frames and shall be unique in the frame identifier set.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 11

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
The MasterReq frame has a fixed identity, 60 (0x3c) and a fixed size (8 bytes), as 
specified in the LIN Protocol Specification. The MasterReq frame can only be sent 
by the master node.

The SlaveResp frame has a fixed identity, 61 (0x3d) and a fixed size (8 bytes) speci-
fied in the LIN Protocol Specification. The SlaveResp frame can only be sent by the 
selected slave node, see LIN Diagnostic and Configuration Specification. The 
selection of the slave node is based on the diagnostic addresses specified in 
Section 2.2.2. 

2.5 SCHEDULE TABLE DEFINITION
The schedule table has changed slightly compared to earlier versions: The reason is 
to be able to describe and handle more complex, dynamically changing clusters with-
out the need of the master application intervention.

<Schedule_table_def> ::=
Schedule_tables {
   [<schedule_table_name> {
        [<command> delay <frame_time> ms ;] 
    }]
}
<schedule_table_name> ::= identifier

All schedule_table_name identifiers shall be unique within the schedule table identifier 
set.

<command> ::=
  <frame_name> |
  MasterReq   |
  SlaveResp   |
  AssignFrameId { <node_name>, <frame_name> } |
  UnassignFrameId { <node_name>, <frame_name> } |
  AssignNAD { <old_NAD>, <new_NAD>, <supplier_id>, <function_id> } |
  FreeFormat { <D1>, <D2>, <D3>, <D4>, <D5>, <D6>, <D7>, <D8> }

The command specifies what will be done in the frame slot. Providing a frame name 
will transfer the specified frame.

MasterReq and SlaveResp are either defined as frames in Section 2.4.5 or, if this 
clause is left out, automatically defined. The contents of these frames is provided via 
the diagnostics and configuration API, see LIN API Specification.

AssignFrameId generates an Assign_frame_id master request frame with a contents 
based on the parameters: NAD, supplier_id and message_id are taken from the node 
attributes of the <node_name>, see Section 2.2.2 and the protected_id is taken from 
the frame definition for <frame_name>, see Section 2.4. All data in this frame is fixed 
and determined during the processing of the LDF file.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 12

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
If a message ID of an event triggered frame shall be assigned a frame protected iden-
tifier (PID) the associated unconditional frame must first have been assigned a pro-
tected identifier.

UnassignFrameId generates an Assign_frame_id master request frame with a con-
tents based on the parameters just like AssignFrameId but with the exception that the 
protected identifier is 0x40, i.e. identifier zero with both parity bits invalid. This is used 
to disable reception/transmission of a dynamically assigned frame identifiers (which is 
necessary to use the identifier for another frame, see also Section 2.4.1.)

AssignNAD generates an Assign_NAD master request frame with a contents directly 
taken from the parameters. All data in this frame is fixed and determined during the 
processing of the LDF file.

Finally, FreeFormat sends a fixed master request frame with the eight data bytes pro-
vided. This may for instance be used to issue user specific fixed frames.

<frame_name> ::= identifier

The frame_name identifier shall exist in the frame identifier set. If the frame_name 
refers to an event triggered frame or a sporadic frame, the associated unconditional 
frames may not be used in the same schedule table.

<frame_time> ::= real_or_integer

The frame_time specifies the duration of the frame slot. It must be longer than the 
maximum allowed frame transfer time and it shall be exact multiple of the master 
node's time base value, as defined in Section 2.2.1. The frame_time value shall be 
specified in milliseconds.

The schedule table selection shall be controlled by the master application program. 
The switch between schedule tables must be done right after the frame time (for the 
currently transmitted frame) has elapsed, see LIN API Specification.

Example
Figure 2.1 shows a time line that corresponds to the schedule table VL1_ST1. It is 
assumed that the time_base (see Section 2.2.1) is set to 5 ms.

Schedule_tables {
  VL1_ST1 {
    VL1_CEM_Frm1 delay 15 ms;
    VL1_LSM_Frm1 delay 15 ms;
    VL1_CPM_Frm1 delay 15 ms;
    VL1_CPM_Frm2 delay 20 ms;
  }
}

Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 13

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
Figure 2.1: Time line for the VL1_ST1 schedule table.

The delay specified for every schedule entry shall be longer than the jitter and the 
worst-case frame transfer time.

2.6 ADDITIONAL INFORMATION
The following sub-sections provide additional information that does not change the 
behavior of the LIN cluster but provide hints for presentation of the traffic by bus 
snooping tools. All declarations are optional.

2.6.1 Signal encoding type definition
The signal encoding type is intended for providing representation and scaling proper-
ties of signals. Although this information may be used to generate automatically scal-
ing API routines in LIN nodes, those API routines would require quite powerful nodes. 
The main purpose of the signal encoding type declarations is in bus traffic snooping 
tools, which can present the recorded traffic in an easily accessed way.

<signal_encoding_type_def> ::=
Signal_encoding_types {
  [<signal_encoding_type_name> {
    [<logical_value>  |
     <physical_range> |
     <bcd_value>      |
     <ascii_value>]
  }]
}
<signal_encoding_type_name> ::= identifier

All signal_encoding_type_name identifier shall be unique within the signal encoding 
type identifier set.

<logical_value>  ::= logical_value,<signal_value>(,<text_info>) ;
<physical_range> ::= physical_value,<min_value>,<max_value>,<scale>,
                     <offset>(,<text_info>) ;
<bcd_value>      ::= bcd_value ;
<ascii_value>    ::= ascii_value ;
<signal_value>   ::= integer

time

Entry #1 Entry #2 Entry #3 Entry #4 Entry #1
VL1_CEM_Frm1 VL1_LSM_Frm1 VL1_CPM_Frm1 VL1_CPM_Frm2 VL1_CEM_Frm1 ...
delay 15 ms delay 15 ms delay 15 ms delay 20ms delay 15 ms

time_base = 5 ms
Jitter Worst case frame transfer time Spare/unused
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 14

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
<min_value>      ::= integer
<max_value>      ::= integer
<scale>          ::= real_or_integer
<offset>         ::= real_or_integer 
<text_info>      ::= char_string

The signal_value the min_value and the max_value shall be in range of 0 to 65535. 
The max_value shall be greater than or equal to min_value. If the raw value is within 
the range defined by the min and max value, the physical value shall be calculated as 
in (1).

physical_value = scale * raw_value + offset. (1)

Example
The V_battery signal is an eight bit representation that follows the graph in Figure 2.2, 
i.e. the resolution is high around 12 V and has three special values for out-of-range 
values.

Signal_encoding_types {
  power_state {
    logical_value, 0, "off";
    logical_value, 1, "on";
  }
  V_battery {
    logical_value, 0, "under voltage";
    physical_value, 1, 63, 0.0625, 7.0, "Volt";
    physical_value, 64, 191, 0.0104, 11.0, "Volt";
    physical_value, 192, 253, 0.0625, 13.0, "Volt";
    logical_value, 254, "over voltage";
    logical_value, 255, "invalid";
  }
}

Figure 2.2: V_battery representation.
1311 177

64

255

0

128

192

V

Signal
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 15

LIN description file 
definition

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
2.6.2 Signal representation definition
The signal representation declaration is used to associate signals with the corre-
sponding signal encoding type.

<Signal_representation_def> ::=
Signal_representation {
  [<signal_encoding_type_name>:<signal_name> ([,<signal_name>]);]
}
<signal_encoding_type_name> ::= identifier

The signal_encoding_type_name identifier shall exist in the signal encoding type iden-
tifier set.

<signal_name> ::= identifier

The signal_name identifier shall exist in the signal identifier set. Each signal may only 
be associated with one signal_encoding_type_name and may not be nested in a 
signal_group_name.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com



LIN Config Language
Revision 2.0

September 23, 2003; Page 16

Overview of Syntax

R
eg

is
te

re
d 

co
py

 fo
r 

jo
hn

2@
um

bc
.e

du
3 OVERVIEW OF SYNTAX
The syntax is described using a modified BNF (Bachus-Naur Format), as summarized 
in Table 3.1 below.

Within files using this syntax, comments are allowed anywhere. The comment syntax 
is the same as that for C++ where anything from // to the end of a line and anything 
enclosed in /* and */ delimiters shall be ignored.

Table 3.1: BNF syntax used in this document.
Symbol Meaning

::= A name on the left of the ::= is expressed using the syntax on its right
<> Used to mark objects specified later

| The vertical bar indicates choice. Either the left-hand side or the right hand side of the verti-
cal bar shall appear

Bold The text in bold is reserved - either because it is a reserved word, or mandatory punctuation
[ ] The text between the square brackets shall appear once or multiple times
( ) The text between the parenthesis are optional, i.e. shall appear once or zero times

char_string Any character string enclosed in quotes "like this"

identifier An identifier. Typically used to name objects. Identifiers shall follow the normal C rules for 
variable declaration

integer An integer. Integers can be in decimal (first digit is the range 1 to 9) or hexadecimal (prefixed 
with 0x)

real_or_integer A real or integer number. A real number is always in decimal and has an embedded decimal 
point.
Contact: H.-Chr. v. d. Wense, Motorola GmbH, Schatzbogen 7, D-81829 Munich, Germany
Ph: +49 (89) 92103-882 E-Mail: H.Wense@Motorola.com


	LIN2.0.book
	Specification Package
	1 Revision history
	2 LIN
	2.1 Scope
	2.2 Features and possibilities
	2.3 Work flow concept
	2.4 Node concept
	2.5 Concept of operation
	2.5.1 Master and slave
	2.5.2 Frames
	2.5.3 Data transport
	2.5.4 Schedule table
	2.6 Document overview
	2.7 History and background
	2.7.1 Compatibility with LIN 1.3
	2.7.2 Changes between LIN 1.3 and LIN 2.0
	2.8 References
	3 LIN Glossary
	Table of contents
	Protocol Specification
	1 Signal Management
	1.1 Signal types
	1.2 Signal consistency
	1.3 Signal packing
	2 Frame Transfer
	2.1 Frame structure
	2.1.1 Break
	2.1.2 Synch byte
	2.1.3 Protected identifier
	2.1.4 Data
	2.1.5 Checksum
	2.2 Frame slots
	2.3 Frame types
	2.3.1 Unconditional frame
	2.3.2 Event triggered frame
	2.3.3 Sporadic frame
	2.3.4 Diagnostic frames
	2.3.5 User-defined frames
	2.3.6 Reserved frames
	3 Schedules
	3.1 Slot allocation
	4 Task Behavior Model
	4.1 Master task state machine
	4.2 Slave task state machine
	4.2.1 Break and synch detector
	4.2.2 Frame processor
	5 Network Management
	5.1 Wake up
	5.2 Goto sleep
	5.3 Power management
	6 Status Management
	6.1 Concept
	6.2 Event triggered frames
	6.3 Reporting to the network
	6.4 Reporting within own node
	7 Appendices
	7.1 Table of numerical properties
	7.2 Table of valid identifiers
	7.3 Example of checksum calculation
	7.4 Syntax and mathematical symbols used in this standard
	Diagnostic and Configuration Specification
	1 Introduction
	2 Node configuration
	2.1 Node model
	2.2 Wildcards
	2.3 PDU structure
	2.3.1 Overview
	2.3.2 NAD
	2.3.3 PCI
	2.3.4 SID
	2.3.5 RSID
	2.3.6 D1 to D5
	2.4 LIN product identification
	2.5 Mandatory requests
	2.5.1 Assign frame identifier
	2.5.2 Read by identifier
	2.6 Optional requests
	2.6.1 Assign NAD
	2.6.2 Conditional change NAD
	2.6.3 Data dump
	3 Diagnostics
	3.1 Signal based diagnostics
	3.2 User defined diagnostics
	3.3 Diagnostics transport layer
	3.3.1 PDU structure
	3.3.2 Defined requests
	3.3.3 ISO timing constraints
	3.3.4 Sequence diagrams
	4 References
	Physical Layer Specification
	1 Oscillator Tolerance
	2 Bit Timing Requirements and Synchronization Procedure
	2.1 Bit Timing Requirements
	2.2 Synchronization Procedure
	3 Line Driver/Receiver
	3.1 General Configuration
	3.2 Definition of Supply Voltages for the Physical Interface
	3.3 Signal Specification
	3.4 Electrical DC parameters
	3.5 Electrical AC Parameters
	3.6 LINE Characteristics
	3.7 ESD/EMI Compliance
	Application Program Interface Specification
	1 Introduction
	1.1 Concept of operation
	1.1.1 System generation
	1.1.2 API
	2 Core API
	2.1 Driver and cluster management
	2.1.1 l_sys_init
	2.2 Signal interaction
	2.2.1 Signal types
	2.2.2 Scalar signal read
	2.2.3 Scalar signal write
	2.2.4 Byte array read
	2.2.5 Byte array write
	2.3 Notification
	2.3.1 l_flg_tst
	2.3.2 l_flg_clr
	2.4 Schedule management
	2.4.1 l_sch_tick
	2.4.2 l_sch_set
	2.5 Interface management
	2.5.1 l_ifc_init
	2.5.2 l_ifc_connect
	2.5.3 l_ifc_disconnect
	2.5.4 l_ifc_goto_sleep
	2.5.5 l_ifc_wake_up
	2.5.6 l_ifc_ioctl
	2.5.7 l_ifc_rx
	2.5.8 l_ifc_tx
	2.5.9 l_ifc_aux
	2.5.10 l_ifc_read_status
	2.6 User provided call-outs
	2.6.1 l_sys_irq_disable
	2.6.2 l_sys_irq_restore
	3 Node configuration
	3.0.1 ld_is_ready
	3.0.2 ld_check_response
	3.0.3 ld_assign_NAD
	3.0.4 ld_assign_frame_id
	3.0.5 ld_read_by_id
	3.0.6 ld_conditional_change_NAD
	4 Diagnostic transport layer
	4.1 Raw API
	4.1.1 ld_put_raw
	4.1.2 ld_get_raw
	4.1.3 ld_raw_tx_status
	4.1.4 ld_raw_rx_status
	4.2 Cooked API
	4.2.1 ld_send_message
	4.2.2 ld_receive_message
	4.2.3 ld_tx_status
	4.2.4 ld_rx_status
	5 Examples
	5.1 LIN core API usage
	5.2 LIN description file
	Node Capability Language Specification
	1 Introduction
	1.1 Plug and play workflow
	1.1.1 System Generation
	1.1.2 System Definition
	1.1.3 Debugging
	2 Node capability file definition
	2.1 Global definition
	2.1.1 Node capability language version number definition
	2.2 Node definition
	2.3 General definition
	2.3.1 LIN protocol version number definition
	2.3.2 LIN Product Identification
	2.3.3 Bit rate
	2.3.4 Non-network parameters
	2.4 Diagnostic definition
	2.5 Frame definition
	2.5.1 Frame properties
	2.5.2 Signal definition
	2.5.3 Signal encoding type definition
	2.6 Status management
	2.7 Free text definition
	3 Overview of Syntax
	4 Example file
	Configuration Language Specification
	1 Introduction
	2 LIN description file definition
	2.1 Global definition
	2.1.1 LIN protocol version number definition
	2.1.2 LIN language version number definition
	2.1.3 LIN speed definition
	2.2 Node definition
	2.2.1 Participating nodes
	2.2.2 Node attributes
	2.2.3 Node composition definition
	2.3 Signal definition
	2.3.1 Standard signals
	2.3.2 Diagnostic signals
	2.3.3 Signal groups
	2.4 Frame definition
	2.4.1 Dynamic frame ids
	2.4.2 Unconditional frames
	2.4.3 Sporadic frames
	2.4.4 Event triggered frames
	2.4.5 Diagnostic frames
	2.5 Schedule table definition
	2.6 Additional information
	2.6.1 Signal encoding type definition
	2.6.2 Signal representation definition
	3 Overview of Syntax


