nnnnnnnnnnnnnnnnnnnnnnnnnnnn

CMSC 201 Fall 2016
PreLab 12 — Recursion

Assignment: PreLab 12 — Recursion
Due Date: During discussion, November 28th through December 1st
Value: 10 points

Part 1A: What is Recursion?

So far this semester, we’ve learned many different ways to control the flow of a
program: selection statements, loops (both for and while), and functions.
One specialized type of function makes use of recursion, and so we call it a
recursive function.

Some problems can be solved by breaking a
problem down into smaller pieces of the same
problem. A real world example would be
Matryoshka dolls, also known as Russian nesting
dolls. These are sets of hollow wooden dolls that
“nest” inside each other, with each doll getting
progressively smaller, with the smallest doll being
solid wood.

(Image from Wikimedia: http://bit.ly/2fDQstN)

If our overall goal is to open all of the dolls until we reached the smallest doll,
we can break the problem down into smaller pieces of itself.

1. Open the doll

2. If there’s another hollow doll inside, go back to step 1

3. If the doll is solid, stop

This is a very simple example of a recursive solution to a problem. A key
component of a recursive function is that it must call itself in order to solve the
problem. In our Matryoshka example, opening the doll is the “function,” and we
continue to “call” that function until we’ve reached the solid doll at the center.

CMSC 201 - Computer Science I for Majors Page 1

http://bit.ly/2fDQstN
http://bit.ly/2fDQstN

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Part 1B: Recursion vs lteration

You could have also solved the previous Matryoshka problem with a while
loop, or even a for loop if we knew ahead of time how many dolls there were.
Both recursion and iteration break a large problem down into smaller pieces.
The main difference between recursion and iteration can be found if we look at
their underlying purpose.

e With iteration, the purpose is to repeat an action until a task is done.
This is true for while loops (stop when the conditional evaluates to
False) and for loops (stop when it reaches the end of the list).

e With recursion the purpose is to break a problem down into smaller and
smaller pieces of itself. When you combine all of those solved smaller
pieces of the problem, the problem as a whole is solved.

Part 1C: “Parts” of a Recursive Function

A successful recursive function must have two parts: at least one base case
and at least one recursive case. The base case is similar to the conditional in
awhile loop, in that it tells the program when to stop. In a recursive function,
it stops calling itself, and typically returns something (a value, a message, or
even None). A recursive function may have more than one base case, just like
a while loop may have more than one comparison in its conditional.

The recursive case is the more interesting part, since this is where the function
makes its recursive calls to itself. A recursive call is the most important part
of a recursive function, and has a few key features:
e It must call the function again with new inputs.
e These new inputs must approach at least one of the base cases.
¢ If needed, the call must also include the return keyword, in order to be
able to return the final result from the original function call.

CMSC 201 - Computer Science I for Majors Page 2

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Part 1D: Recursive Examples

You’ve seen a number of recursive examples in class already, but let’s look at
a few more. A very simple one is a “countdown” function — as a reminder, this
is a toy example. We could easily do this with a loop, but we want to instead
examine how recursion works.

Here is the code for the recursive countdown function:
def countDown (currNum) :

base case

if currNum ==
print ("The end!")

recursive case

else:
print ("Counting down from", currNum, "...")
countDown (currNum - 1) # <----RECURSIVE CALL

Take a look at this code and see if you can figure out exactly how it works.
Once you have, here is a sample run, using the full code (including a simple
main () to get the number and make the initial call to the recursive function):

Please enter a number to count down from: 4
Counting down from
Counting down from
Counting down from
Counting down from
The end!

RPN W

The base case, when the function ends, is when the number reaches zero.
The function doesn’t print anything out or return anything, it simply doesn't call
itself (the recursive function) again.

CMSC 201 - Computer Science I for Majors Page 3

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Here is a slightly less “toy” example: something to compute factorials.
Factorials were discussed during lecture, but as a reminder, they are the
product of all the numbers between the selected number and 1:

6!=*6*5*4*3*2*1

Here is the code for the recursive function for factorial. It has a few extra
print () statements to help us trace our way through the function when it is
run.

def fact (num) :
print("Calculating factorial for", num)

base cases (0! and 1! both equal 1)
if num ==
return 1
if num ==
return 1
recursive case
else:
print ("\tIt is " + str(num) + " * " \
+ str(num-1) + "!")
return num * fact(num - 1) # <---RECURSIVE CALL

Again, take a look at this code and see if you can figure out exactly how it
works. Here is a sample run:

Please enter a number to compute factorial for: 6
Calculating factorial for 6
It is 6 * 5!
Calculating factorial for 5
It is 5 * 4!
Calculating factorial for 4
It is 4 * 3!
Calculating factorial for 3
It is 3 * 2!
Calculating factorial for 2
It is 2 * 1!
Calculating factorial for 1

The factorial of 6 is 720

CMSC 201 - Computer Science I for Majors Page 4

