
Algorithms
� Problem: Write pseudocode for a program that keeps asking the

user to input integers until the user enters zero, and then determines
and outputs the smallest integer. (Hint: Think about keeping a
variable that stores the minimum value. Then you can compare the
minimum to each value read in. If the number you read in is smaller
than the minimum, it should become the new minimum.)

� Sample input/output for program is listed below. Your program's
output is in bold.
Please input an integer, 0 to end: -2
Please input an integer, 0 to end: 10
Please input an integer, 0 to end: -8
Please input an integer, 0 to end: 17
Please input an integer, 0 to end: 0

The smallest integer entered was -8.

Introduction to C
Topics

� Compilation
� Using the gcc Compiler
� The Anatomy of a C Program
� 104 C Programming Standards and

Indentation Styles

Reading

� Sections Chapter 1, 2.1

Writing C Programs
� A programmer uses a text editor to create or modify

files containing C code.

� Code is also known as source code.

� A file containing source code is called a source file.

� After a C source file has been created, the programmer
must invoke the C compiler before the program can be
executed (run).

Compiler
� The five stages of a compiler

combine to translate a high
level language to a low level
language, generally closer to
that of the target computer.

� Each stage, or sub-process,
fulfills a single task and has
one or more classic
techniques for
implementation.

Examines the Object Code to determine whether there are more
efficient means of executionOptimizer

Linearizes the Qualified Code and produces the equivalent
Object CodeCode Generator

Analyzes the Parsed Code for meaning
Fills in assumed or missing information
Tags groups with meaning information

Semantic Analyzer

Analyzes the Tokenized Code for structure
Amalgamates symbols into syntactic groups

Tags groups with type information
Syntactic Analyzer

Analyzes the Source Code
Removes "white space" and comments

Formats it for easy access (creates tokens)
Tags language elements with type information

Begins to fill in information in the SYMBOL TABLE **

Lexical Analyzer

PurposeComponent

The Symbol Table is the data structure that all elements of the compiler use to collect and share information about
symbols and groups of symbols in the program being translated

Using the C Compiler at UMBC
� Invoking the compiler is system dependent.

� At UMBC, we have two C compilers available, cc and
gcc.

� For this class, we will use the gcc compiler as it is the
compiler available on the Linux system.

Invoking the gcc Compiler

 At the prompt, type

 gcc -ansi -Wall pgm.c

 where pgm.c is the C program source file.

� -ansi is a compiler option that tells the compiler
to adhere to the ANSI C standard.

� -Wall is an option to turn on all compiler
warnings (best for new programmers).

The Result : a.out
� If there are no errors in pgm.c, this command

produces an executable file, which is one that
can be executed (run).

� The gcc compiler names the executable file a.out
� To execute the program, at the prompt, type

a.out

� Although we call this process “compiling a
program,” what actually happens is more
complicated.

3 Stages of Compilation
Stage 1: Preprocessing

� Performed by a program called the preprocessor
� Modifies the source code (in RAM) according to

preprocessor directives (preprocessor
commands) embedded in the source code

� Strips comments and whitespace from the code

� The source code as stored on disk is not modified.

3 Stages of Compilation (con’t)
Stage 2: Compilation

o Performed by a program called the compiler
o Translates the preprocessor-modified source

code into object code (machine code)
o Checks for syntax errors and warnings
o Saves the object code to a disk file, if

instructed to do so (we will not do this).
o If any compiler errors are received, no object code

file will be generated.
o An object code file will be generated if only

warnings, not errors, are received.

3 Stages of Compilation (con’t)
Stage 3: Linking

o Combines the program object code with other
object code to produce the executable file.

o The other object code can come from the Run-
Time Library, other libraries, or object files that
you have created.

o Saves the executable code to a disk file. On the
Linux system, that file is called a.out.

o If any linker errors are received, no executable file will be
generated.

Program Development Using gcc

Source File pgm.c

Program Object Code File pgm.o

Executable File a.out

Preprocessor

Modified Source Code in RAM

Compiler

Linker

Other Object Code Files (if any)

Editor

A Simple C Program
 /* Filename: hello.c
 Author: Brian Kernighan & Dennis Ritchie
 Date written: ?/?/1978
 Description: This program prints the greeting

“Hello, World!”
 */

 #include <stdio.h>

 int main ()
 {
 printf (“Hello, World!\n”) ;
 return 0 ;
 }

Anatomy of a C Program
 program header comment

 preprocessor directives (if any)

 int main ()
 {
 statement(s)
 return 0 ;
 }

Program Header Comment
� A comment is descriptive text used to help a

reader of the program understand its content.
� All comments must begin with the characters

/* and end with the characters */
� These are called comment delimiters
� The program header comment always comes

first.
� Look at the class web page for the required

contents of our header comment.

Preprocessor Directives
� Lines that begin with a # in column 1 are called

preprocessor directives (commands).
� Example: the #include <stdio.h> directive

causes the preprocessor to include a copy of
the standard input/output header file stdio.h at
this point in the code.

� This header file was included because it
contains information about the printf () function
that is used in this program.

int main ()
� Every program must have a function called

main. This is where program execution begins.
� main() is placed in the source code file as the

first function for readability.
� The reserved word “int” indicates that main()

returns an integer value.
� The parentheses following the reserved word

“main” indicate that it is a function.

The Function Body
� A left brace (curly bracket) -- { -- begins

the body of every function. A
corresponding right brace -- } -- ends the
function body.

� The style is to place these braces on
separate lines in column 1 and to indent
the entire function body 3 to 5 spaces.

printf (“Hello, World!\n”) ;
� This line is a C statement.
� It is a call to the function printf () with a single

argument (parameter), namely the string
“Hello, World!\n”.

� Even though a string may contain many
characters, the string itself should be thought of
as a single quantity.

� Notice that this line ends with a semicolon. All
statements in C end with a semicolon.

return 0 ;
� Because function main() returns an integer value,

there must be a statement that indicates what this
value is.

� The statement
return 0 ;

indicates that main() returns a value of zero to
the operating system.

� A value of 0 indicates that the program
successfully terminated execution.

� Do not worry about this concept now. Just remember
to use the statement.

Another C Program
/***
** File: proj1.c
** Author: Joe Student
** Date: 9/15/01
** SSN: 123-45-6789
** Section: 0304
** E-mail: jstudent22@umbc.edu
**
** This program prompts the user for two integer values then displays
** their product.
**
***/

Another C Program (con’t)
#include <stdio.h>

int main()

{

int value1, value2, product ;

printf(“Enter two integer values: “) ;

scanf(“%d%d”, &value1, &value2) ;

product = value1 * value2 ;

printf(“Product = %d\n”, product) ;

return 0 ;

}

Good Programming Practices
� C programming standards and indentation

styles are available on the 104 course
homepage.

� You are expected to conform to these
standards for all programming projects in this
class and in CMSC 201. (This will be part of
your grade for each project!)

� The program just shown conforms to these
standards, but is uncommented (later).

� Subsequent lectures will include more “Good
Programming Practices” slides.

