
Searching and Sorting
Topics

 Sequential Search on an Unordered File
 Sequential Search on an Ordered File
 Binary Search
 Bubble Sort
 Insertion Sort

Reading

 Sections 6.6 - 6.8

Common Problems
 There are some very common problems that we use

computers to solve:
 Searching through a lot of records for a specific record or set of

records
 Placing records in order, which we call sorting

 There are numerous algorithms to perform searches and
sorts. We will briefly explore a few common ones.

Searching
 A question you should always ask when selecting a

search algorithm is “How fast does the search have to
be?” The reason is that, in general, the faster the
algorithm is, the more complex it is.

 Bottom line: you don’t always need to use or should use
the fastest algorithm.

 Let’s explore the following search algorithms, keeping
speed in mind.
 Sequential (linear) search
 Binary search

Sequential Search on an Unordered File
 Basic algorithm:

Get the search criterion (key)
Get the first record from the file
While ((record != key) and (still more records))

Get the next record
End_while

 When do we know that there wasn’t a record in
the file that matched the key?

Sequential Search on an Ordered File
 Basic algorithm:

Get the search criterion (key)
Get the first record from the file
While ((record < key) and (still more records))

Get the next record
End_while
If (record = key)

Then success
Else there is no match in the file

End_else

 When do we know that there wasn’t a record in the file
that matched the key?

Sequential Search of
Ordered vs. Unordered List
 Let’s do a comparison.
 If the order was ascending alphabetical on customer’s

last names, how would the search for John Adams on
the ordered list compare with the search on the
unordered list?
 Unordered list

 if John Adams was in the list?
 if John Adams was not in the list?

 Ordered list
 if John Adams was in the list?
 if John Adams was not in the list?

Ordered vs Unordered (cont.)
 How about George Washington?

 Unordered
 if George Washington was in the list?
 If George Washington was not in the list?

 Ordered
 if George Washington was in the list?
 If George Washington was not in the list?

 How about James Madison?

Ordered vs. Unordered (cont.)
 Observation: the search is faster on an ordered

list only when the item being searched for is not
in the list.

 Also, keep in mind that the list has to first be
placed in order for the ordered search.

 Conclusion: the efficiency of these algorithms
is roughly the same.

 So, if we need a faster search, we need a
completely different algorithm.

 How else could we search an ordered file?

Binary Search
 If we have an ordered list and we know how

many things are in the list (i.e., number of
records in a file), we can use a different strategy.

 The binary search gets its name because the
algorithm continually divides the list into two
parts.

How a Binary Search Works

 Always look at the center
value. Each time you get
to discard half of the
remaining list.

Is this fast ?

How Fast is a Binary Search?
 Worst case: 11 items in the list took 4 tries
 How about the worst case for a list with 32 items

?
 1st try - list has 16 items
 2nd try - list has 8 items
 3rd try - list has 4 items
 4th try - list has 2 items
 5th try - list has 1 item

How Fast is a Binary Search?
 List has 250 items

 1st try - 125 items
 2nd try - 63 items
 3rd try - 32 items
 4th try - 16 items
 5th try - 8 items
 6th try - 4 items
 7th try - 2 items
 8th try - 1 item

 List has 512 items

 1st try - 256 items
 2nd try - 128 items
 3rd try - 64 items
 4th try - 32 items
 5th try - 16 items
 6th try - 8 items
 7th try - 4 items
 8th try - 2 items
 9th try - 1 item

What’s the Pattern?
 List of 11 took 4 tries
 List of 32 took 5 tries
 List of 250 took 8 tries
 List of 512 took 9 tries

 32 = 25 and 512 = 29

 8 < 11 < 16 23 < 11 < 24

 128 < 250 < 256 27 < 250 < 28

A Very Fast Algorithm!
 How long (worst case) will it take to find an item

in a list 30,000 items long?

 210 = 1024 213 = 8192
 211 = 2048 214 = 16384
 212 = 4096 215 = 32768

 So, it will take only 15 tries!

Lg n Efficiency
 We say that the binary search algorithm runs in

log2 n time. (Also written as lg n)
 Lg n means the log to the base 2 of some value

of n.
 8 = 23 lg 8 = 3 16 = 24 lg 16 = 4
 There are no algorithms that run faster than lg n

time.

Sorting
 So, the binary search is a very fast search

algorithm.
 But, the list has to be sorted before we can

search it with binary search.
 To be really efficient, we also need a fast sort

algorithm.

Common Sort Algorithms
 Bubble Sort Heap Sort
 Selection Sort Merge Sort
 Insertion Sort Quick Sort

 There are many known sorting algorithms. Bubble sort
is the slowest, running in n2 time. Quick sort is the
fastest, running in n lg n time.

 As with searching, the faster the sorting algorithm, the
more complex it tends to be.

 We will examine two sorting algorithms:
 Bubble sort
 Insertion sort

Bubble Sort - Let’s Do One!

C
P
G
A
T
O
B

Bubble Sort Code
void bubbleSort (int a[] , int size)
{
 int i, j, temp;
 for (i = 0; i < size; i++) /* controls passes through the list */
 {

for (j = 0; j < size - 1; j++) /* performs adjacent comparisons */
{

if (a[j] > a[j+1]) /* determines if a swap should occur */
{

temp = a[j]; /* swap is performed */
a[j] = a[j + 1];
a[j+1] = temp;

}
}

}
}

Insertion Sort
 Insertion sort is slower than quick sort, but not

as slow as bubble sort, and it is easy to
understand.

 Insertion sort works the same way as arranging
your hand when playing cards.
 Out of the pile of unsorted cards that were dealt to

you, you pick up a card and place it in your hand in
the correct position relative to the cards you’re
already holding.

Arranging Your Hand

7

5 7

Arranging Your Hand

5 6

 75

7

5 6 7

K

5 6 7 8 K

Insertion Sort
 Unsorted - shaded
 Look at 2nd item - 5.
 Compare 5 to 7.
 5 is smaller, so move 5

 to temp, leaving
 an empty slot in
 position 2.
 Move 7 into the empty
 slot, leaving position 1
 open.

 Move 5 into the open
 position.

7

 7

57

5

7

K

5

 7 3

1

2

Insertion Sort (cont.) Look at next item - 6.
 Compare to 1st - 5.
 6 is larger, so leave 5.

 Compare to next - 7.
 6 is smaller, so move
 6 to temp, leaving an

 empty slot.
 Move 7 into the empty
 slot, leaving position 2
 open.

 Move 6 to the open
 2nd position.

 6

7

 7

5

7

5

K5

 7

 6

 7

5

 6

5

3

1

2

Insertion Sort (cont.)
 Look at next item - King.
 Compare to 1st - 5.
 King is larger, so

 leave 5 where it is.

 Compare to next - 6.
 King is larger, so
 leave 6 where it is.

 Compare to next - 7.

 King is larger, so
 leave 7 where it is.

 7 K5 6

Insertion Sort (cont.)

7

 7

5

7

5 K

5

 7

 6 7

 8

5

 6

5

 6

 6

 6

8

K 8

K

K 8

K

3

1

2

Courses at UMBC
 Data Structures - CMSC 341

 Some mathematical analysis of various algorithms,
including sorting and searching

 Design and Analysis of Algorithms - CMSC 441
 Detailed mathematical analysis of various algorithms

 Cryptology - CMSC 443
 The study of making and breaking codes

