Searching and Sorting

Topics

Sequential Search on an Unordered File
Sequential Search on an Ordered File
Binary Search

Bubble Sort

Insertion Sort

Reading
Sections 6.6 - 6.8

Common Problems

There are some very common problems that we use
computers to solve:

= Searching through a lot of records for a specific record or set of
records

= Placing records in order, which we call sorting
There are numerous algorithms to perform searches and
sorts. We will briefly explore a few common ones.

Searching

A question you should always ask when selecting a
search algorithm is “How fast does the search have to
be?” The reason is that, in general, the faster the
algorithm is, the more complex it is.

Bottom line: you don’t always need to use or should use
the fastest algorithm.

Let’s explore the following search algorithms, keeping
speed in mind.

= Sequential (linear) search

= Binary search




Sequential Search on an Unordered File

Basic algorithm:

Get the search criterion (key)

Get the first record from the file

While ( (record != key) and (still more records) )
Get the next record

End_while

When do we know that there wasn’t a record in
the file that matched the key?

Sequential Search on an Ordered File

Basic algorithm:

Get the search criterion (key)
Get the first record from the file
While ( (record < key) and (still more records) )
Get the next record
End_while
If ( record = key )
Then success
Else there is no match in the file
End_else
When do we know that there wasn’t a record in the file
that matched the key?

Sequential Search of
Ordered vs. Unordered List

Let’'s do a comparison.
If the order was ascending alphabetical on customer’s
last names, how would the search for John Adams on
the ordered list compare with the search on the
unordered list?
= Unordered list
if John Adams was in the list?
if John Adams was not in the list?
= Ordered list
if John Adams was in the list?
if John Adams was not in the list?




Ordered vs Unordered (cont.)

How about George Washington?
= Unordered
if George Washington was in the list?
If George Washington was not in the list?
= Ordered
if George Washington was in the list?
If George Washington was not in the list?

How about James Madison?

Ordered vs. Unordered (cont.)

Observation: the search is faster on an ordered
list only when the item being searched for is not
in the list.

Also, keep in mind that the list has to first be
placed in order for the ordered search.
Conclusion: the efficiency of these algorithms
is roughly the same.

So, if we need a faster search, we need a
completely different algorithm.

How else could we search an ordered file?

Binary Search

If we have an ordered list and we know how
many things are in the list (i.e., number of
records in a file), we can use a different strategy.
The binary search gets its name because the
algorithm continually divides the list into two
parts.




How a Binary Search Works

Always look at the center
value. Each time you get
to discard half of the
remaining list.

Is this fast ?

How Fast is a Binary Search?

Worst case: 11 items in the list took 4 tries
How about the worst case for a list with 32 items

?

= 1sttry - list has 16 items
= 2nd try - list has 8 items
= 3rd try - list has 4 items

m 4th try - list has 2 items

= 5th try - list has 1 item

How Fast is a Binary Search?

List has 250 items

1st try - 125 items
2nd try - 63 items
3rd try - 32 items
4th try - 16 items
5th try - 8 items
6th try - 4 items
7th try - 2 items
8th try - 1 item

List has 512 items

1st try - 256 items
2nd try - 128 items
3rd try - 64 items
4th try - 32 items
5th try - 16 items
6th try - 8 items
7th try - 4 items
8th try - 2 items
9th try - 1 item




What’s the Pattern?

List of 11 took 4 tries
List of 32 took 5 tries
List of 250 took 8 tries
List of 512 took 9 tries

32=2%5and 512 =29
8<11<16 8<11<24
128 < 250 < 256 27 <250 < 28

A Very Fast Algorithm!

How long (worst case) will it take to find an item
in a list 30,000 items long?

210=1024 213 =8192
211=2048 214 =16384
212 = 4096 215 =32768

So, it will take only 15 tries!

Lgn Efficiency

We say that the binary search algorithm runs in
log, n time. (Also written as Ig n)

Lg n means the log to the base 2 of some value
of n.
8=2% Ig8=3 16=2% Ig16=4

There are no algorithms that run faster than Ig n
time.




Sorting

So, the binary search is a very fast search
algorithm.

But, the list has to be sorted before we can
search it with binary search.

To be really efficient, we also need a fast sort
algorithm.

Common Sort Algorithms

Bubble Sort Heap Sort
Selection Sort Merge Sort
Insertion Sort Quick Sort

There are many known sorting algorithms. Bubble sort
is the slowest, running in n2 time. Quick sort is the
fastest, running in nlg n time.
As with searching, the faster the sorting algorithm, the
more complex it tends to be.
We will examine two sorting algorithms:

= Bubble sort

= Insertion sort

Bubble Sort - Let’s Do One!

WO-HP®TUO




Bubble Sort Code

void bubbleSort (int a[ ], int size)
{
inti, j, temp;
for (i=0;i<size; i++) [* controls passes through the list */
{
for (j=0; j <size - 1; j++) [* performs adjacent comparisons */

{

if(a[j]1>a[j+1]) /* determines if a swap should occur */

temp=a[j]; I* swap is performed */
a[jl=a[j+1];
a[j+1]=temp;

Insertion Sort

Insertion sort is slower than quick sort, but not
as slow as bubble sort, and it is easy to
understand.

Insertion sort works the same way as arranging
your hand when playing cards.

= Qut of the pile of unsorted cards that were dealt to
you, you pick up a card and place it in your hand in
the correct position relative to the cards you're
already holding.

Arranging Your Hand




Arranging Your Hand

H

|eo|[eo| [<o]

Insertion Sort

(7]
M
78]
BAIEA
(7] ]
0

T+

Unsorted - shaded
Look at 2nd item - 5.
Compare 5to 7.

5 is smaller, so move 5
to temp, leaving

an empty slot in
position 2.
Move 7 into the empty
slot, leaving position 1
open.

Move 5 into the open
position.

Insertion Sort (cont.)

Look at next item - 6.
G

empty slot.

to-4st-5.
mpare-to-tst—5:

6 is larger, so leave 5.

6 Compare to next - 7.
<> 6 is smaller, so move
6 to temp, leaving an

Move 7 into the empty
slot, leaving position 2
open.

Move 6 to the open
2nd position.




Insertion Sort (cont.)

Look at next item - King.

Compare to 1st - 5.
5 7 K King is larger, so
<> <> <> leave 5 where it is.

Compare to next - 6.
King is larger, so
leave 6 where it is.

Compare to next - 7.
King is larger, so
leave 7 where it is.

Insertion Sort (cont.)

H<>oo H<>oo‘

3
A
3
L4
3
¢

(o] e~][ex]ex] =]

x|

‘OO’H <>O3H<>03H<>@H<>o)‘

Courses at UMBC

Data Structures - CMSC 341

= Some mathematical analysis of various algorithms,
including sorting and searching

Design and Analysis of Algorithms - CMSC 441

= Detailed mathematical analysis of various algorithms
Cryptology - CMSC 443

= The study of making and breaking codes




