
Functions, Part 1 of 3
Topics

 Using Predefined Functions
 Programmer-Defined Functions
 Using Input Parameters
 Function Header Comments

Reading

 Sections 5.1 - 5.8

Review of Structured Programming
 Structured programming is a problem solving strategy

and a programming methodology that includes the
following guidelines:
 The program uses only the sequence, selection, and

repetition control structures.
 The flow of control in the program should be as

simple as possible.
 The construction of a program embodies top-down

design.

Review of Top-Down Design
 Involves repeatedly decomposing a problem

into smaller problems
 Eventually leads to a collection of small

problems or tasks each of which can be easily
coded

 The function construct in C is used to write
code for these small, simple problems.

Functions
 A C program is made up of one or more functions, one of

which is main().
 Execution always begins with main(), no matter where it

is placed in the program. By convention, main() is
located before all other functions.

 When program control encounters a function name, the
function is called (invoked).
 Program control passes to the function.
 The function is executed.
 Control is passed back to the calling function.

#include <stdio.h>

 int main () printf is the name of a predefined
{ function in the stdio library

 printf (“Hello World!\n”) ; this statement is
 return 0 ; is known as a
} function call

this is a string we are passing
 as an argument (parameter) to
 the printf function

Sample Function Call

Functions (cont.)
 We have used three predefined functions so far:

 printf
 scanf
 getchar

 Programmers can write their own functions.
 Typically, each module in a program’s design

hierarchy chart is implemented as a function.
 C function names follow the same naming rules as

C variables.

Sample Programmer-Defined Function
#include <stdio.h>

void printMessage (void) ;

int main ()
{

printMessage () ;
 return 0 ;
}

void printMessage (void)
{

printf (“A message for you:\n\n”) ;
printf (“Have a nice day!\n”) ;

}

Examining printMessage
#include <stdio.h>

void printMessage (void) ; function prototype

int main ()
{

printMessage () ; function call
 return 0 ;
}

void printMessage (void) function header
{

printf (“A message for you:\n\n”) ; function
printf (“Have a nice day!\n”) ; body

}

 function definition

The Function Prototype
 Informs the compiler that there will be a function defined

later that:

returns this type
has this name

takes these arguments

void printMessage (void) ;

 Needed because the function call is made before the
definition -- the compiler uses it to see if the call is made
properly

The Function Call
 Passes program control to the function
 Must match the prototype in name, number of

arguments, and types of arguments

void printMessage (void) ;

int main () same name no arguments
{

printMessage () ;
 return 0 ;

}

The Function Definition
 Control is passed to the function by the function call.

The statements within the function body will then be
executed.
void printMessage (void)
{

printf (“A message for you:\n\n”) ;
printf (“Have a nice day!\n”) ;

}

 After the statements in the function have completed,
control is passed back to the calling function, in this
case main() . Note that the calling function does not
have to be main() .

General Function Definition Syntax
type functionName (parameter1, . . . , parametern)
{

variable declaration(s)
statement(s)

}

 If there are no parameters, either
functionName() OR functionName(void)

is acceptable.
 There may be no variable declarations.
 If the function type (return type) is void, a return statement is not

required, but the following are permitted:

 return ; OR return() ;

Using Input Parameters
void printMessage (int counter) ;
int main ()
{

int num;
printf (“Enter an integer: “) ;
scanf (“%d”, &num) ;
printMessage (num) ; one argument matches the one formal parameter

 return 0 ; of type int of type int
}

void printMessage (int counter)
{

int i ;
for (i = 0; i < counter; i++)
{
 printf (“Have a nice day!\n”) ;
}

}

Final “Clean” C Code
#include <stdio.h>

void printMessage (int counter) ;

int main ()
{

int num ; /* number of times to print message */

printf (“Enter an integer: “) ;
scanf (“%d”, &num) ;
printMessage (num) ;

 return 0 ;
}

Final “Clean” C Code (cont).
/***
** printMessage - prints a message a specified number of times
** Inputs: counter - the number of times the message will be
** printed
** Outputs: None
/***/
void printMessage (int counter)
{
 int i ; /* loop counter */

 for (i = 0; i < counter; i++)
 {
 printf (“Have a nice day!\n”) ;
 }
}

Good Programming Practice
 Notice the function header comment before the

definition of function printMessage.
 This is a good practice and is required by the 104 C

Coding Standards.
 Your header comments should be neatly formatted and

contain the following information:
 function name
 function description (what it does)
 a list of any input parameters and their meanings
 a list of any output parameters and their meanings
 a description of any special conditions

