Functions, Part 1 of 3

Topics

Using Predefined Functions
Programmer-Defined Functions
Using Input Parameters
Function Header Comments

Reading
Sections 5.1 -5.8

Review of Structured Programming

Structured programming is a problem solving strategy
and a programming methodology that includes the
following guidelines:
= The program uses only the sequence, selection, and
repetition control structures.
= The flow of control in the program should be as
simple as possible.
= The construction of a program embodies top-down
design.

Review of Top-Down Design

Involves repeatedly decomposing a problem
into smaller problems

Eventually leads to a collection of small
problems or tasks each of which can be easily
coded

The function construct in C is used to write
code for these small, simple problems.

Functions

A C program is made up of one or more functions, one of
which is main().

Execution always begins with main(), no matter where it
is placed in the program. By convention, main() is
located before all other functions.

When program control encounters a function name, the
function is called (invoked).

= Program control passes to the function.
= The function is executed.
= Control is passed back to the calling function.

Sample Function Call

#include <stdio.h>

int main () printf is the name of a predefined
{ function in the stdio library

printf (“Hello World'\n") ; ===y

return 0 ;
}

this is a string we are passing
as an argument (parameter) to
the printf function

Functions (cont.)

We have used three predefined functions so far:
w printf
m scanf
m getchar
Programmers can write their own functions.
Typically, each module in a program’s design
hierarchy chart is implemented as a function.

C function names follow the same naming rules as
C variables.

Sample Programmer-Defined Function

#include <stdio.h>

void printMessage (void) ;

intmain ()

{
printMessage () ;
return 0 ;

}

void printMessage (void)

{
printf (“A message for you:\n\n”) ;
printf (‘Have a nice day\n”) ;

}

Examining printMessage

#include <stdio.h>

void printMessage (void) ; —=mmi===== function prototype

int main ()

{
printMessage () ; ——esiifssss—— function call
return 0 ;

}

void printMessage (void) ——ifjssm function header

{
printf (“A message for you:\n\n”) ; function
printf (“Have a nice day!\n”) ; body

ﬁ function definition

The Function Prototype

Informs the compiler that there will be a function defined
later that:

returns this type
has this name
. takes these arguments

}

void printMessage (void) ;

Needed because the function call is made before the
definition -- the compiler uses it to see if the call is made
properly

The Function Call

Passes program control to the function

Must match the prototype in name, number of
arguments, and types of arguments

void pr|ntMevs\sage (void) e

. . N T

intmain () same name no arguments

{ / /
printMessage () ;

return 0 ;

The Function Definition

Control is passed to the function by the function call.
The statements within the function body will then be
executed.
void printMessage (void)
{

printf (“A message for you:\n\n”) ;

printf (‘Have a nice day\n”) ;
}
After the statements in the function have completed,
control is passed back to the calling function, in this
case main(). Note that the calling function does not
have to be main() .

General Function Definition Syntax

type functionName (parametery, . . ., parameter,)

{

variable declaration(s)
statement(s)

If there are no parameters, either
functionName() OR functionName(void)
is acceptable.
There may be no variable declarations.
If the function type (return type) is void, a return statement is not
required, but the following are permitted:

return ; OR return() ;

Using Input Parameters

void printMessage (int counter) ;
int main ()

int num;

printf (“Enter an integer: “) ;

scanf (“%d”, &num) ;

printMessage (num) ; gam ONe argument matches the one formal parameter
return 0; of type int of type int

}

void printMessage (int counter)

{

for (

0; i < counter; i++)
{
printf (“Have a nice day!\n”) ;

}

Final “Clean” C Code

#include <stdio.h>
void printMessage (int counter) ;
int main ()
{
intnum ; /* number of times to print message */
printf (‘Enter an integer:) ;
scanf (“%d”, &num) ;
printMessage (num) ;

return 0 ;

Final “Clean” C Code (cont).

** printMessage - prints a message a specified number of times
** Inputs: counter - the number of times the message will be

> printed

** Qutputs: None

void printMessage (int counter)

{

inti; /*loop counter */

for (i=0;i<counter; i++)

{
}

printf (“Have a nice day!\n”) ;

}

Good Programming Practice

Notice the function header comment before the
definition of function printMessage.

This is a good practice and is required by the 104 C
Coding Standards.

Your header comments should be neatly formatted and
contain the following information:

= function name

= function description (what it does)

= a list of any input parameters and their meanings
= a list of any output parameters and their meanings
= a description of any special conditions

