
The switch Statement
Topics

 Multiple Selection
 switch Statement
 char Data Type and getchar()
 EOF constant

 Reading

 Section 4.7, 4.12

Multiple Selection
 So far, we have only seen binary selection.

if (age >= 18)

{

 printf(“Vote!\n”) ;

}

if (age >= 18)

{

 printf(“Vote!\n”) ;

}

else

{

 printf(“Maybe next time!\n”) ;

}

Multiple Selection (cont.)
 Sometimes it is necessary to branch in more

than two directions.
 We do this via multiple selection.
 The multiple selection mechanism in C is the

switch statement.

Multiple Selection with if
if (day == 0) {
 printf (“Sunday”) ;
}
if (day == 1) {
 printf (“Monday”) ;
}
if (day == 2) {
 printf (“Tuesday”) ;
}
if (day == 3) {
 printf (“Wednesday”) ;
}

 (continued)

if (day == 4) {
 printf (“Thursday”) ;
}
if (day == 5) {
 printf (“Friday”) ;
}
if (day == 6) {
 printf (“Saturday”) ;
}
if ((day < 0) || (day > 6)) {
 printf(“Error - invalid day.\n”) ;
}

Multiple Selection with if-else
if (day == 0) {
 printf (“Sunday”) ;
} else if (day == 1) {
 printf (“Monday”) ;
} else if (day == 2) {
 printf (“Tuesday”) ;
} else if (day == 3) {
 printf (“Wednesday”) ;
} else if (day == 4) {
 printf (“Thursday”) ;
} else if (day == 5) {
 printf (“Friday”) ;
} else if (day = 6) {
 printf (“Saturday”) ;
} else {
 printf (“Error - invalid day.\n”) ;
}

This if-else structure is more
efficient than the corresponding
if structure. Why?

The switch Multiple-Selection
Structure
switch (integer expression)
{

case constant1 :
statement(s)

 break ;
case constant2 :

statement(s)
break ;

. . .
default: :

statement(s)
break ;

}

 The last statement of each case in the switch
should almost always be a break.

 The break causes program control to jump to the
closing brace of the switch structure.

 Without the break, the code flows into the next
case. This is almost never what you want.

 A switch statement will compile without a default
case, but always consider using one.

switch Statement Details

Good Programming Practices
 Include a default case to catch invalid data.
 Inform the user of the type of error that has

occurred (e.g., “Error - invalid day.”).
 If appropriate, display the invalid value.
 If appropriate, terminate program execution

(discussed in CMSC 201).

switch Example
switch (day)
{

case 0: printf (“Sunday\n”) ;
 break ;

case 1: printf (“Monday\n”) ;
 break ;

case 2: printf (“Tuesday\n”) ;
 break ;

case 3: printf (“Wednesday\n”) ;
 break ;

case 4: printf (“Thursday\n”) ;
 break ;

case 5: printf (“Friday\n”) ;
 break ;

case 6: printf (“Saturday\n”) ;
 break ;

default: printf (“Error -- invalid day.\n”) ;
 break ;

}

Is this structure more
efficient than the
equivalent nested if-else
structure?

Why Use a switch Statement?

 A switch statement can be more efficient than an
if-else.

 A switch statement may also be easier to read.
 Also, it is easier to add new cases to a switch

statement than to a nested if-else structure.

The char Data Type
 The char data type holds a single character.

 char ch;
 Example assignments:

char grade, symbol;

grade = ‘B’;
symbol = ‘$’;

 The char is held as a one-byte integer in memory. The
ASCII code is what is actually stored, so we can use
them as characters or integers, depending on our need.

The char Data Type (cont.)
 Use

 scanf (“%c”, &ch) ;

 to read a single character into the variable ch. (Note that
the variable does not have to be called “ch”.”)

 Use
printf(“%c”, ch) ;

to display the value of a character variable.

char Example
#include <stdio.h>
int main ()
{

char ch ;

printf (“Enter a character: “) ;
scanf (“%c”, &ch) ;
printf (“The value of %c is %d.\n”, ch, ch) ;

 return 0 ;
}

If the user entered an A, the output would be:

The value of A is 65.

The getchar () Function
 The getchar() function is found in the stdio

library.
 The getchar() function reads one character from

stdin (the standard input buffer) and returns
that character’s ASCII value.

 The value can be stored in either a character
variable or an integer variable.

getchar () Example
#include <stdio.h>
int main ()
{

char ch ; /* int ch would also work! */

printf (“Enter a character: “) ;
 ch = getchar() ;

printf (“The value of %c is %d.\n”, ch, ch) ;
 return 0 ;
}

If the user entered an A, the output would be:

The value of A is 65.

Problems with Reading Characters
 When getting characters, whether using scanf() or

getchar(), realize that you are reading only one
character.

 What will the user actually type? The character he/she
wants to enter, followed by pressing ENTER.

 So, the user is actually entering two characters, his/her
response and the newline character.

 Unless you handle this, the newline character will remain
in the stdin stream causing problems the next time you
want to read a character. Another call to scanf() or
getchar() will remove it.

Improved getchar() Example
#include <stdio.h>
int main ()
{
 char ch, newline ;

 printf (“Enter a character: “) ;
 ch = getchar() ;
 newline = getchar() ; /* could also use scanf(“%c”, &newline)

; */
 printf (“The value of %c is %d.\n”, ch, ch) ;
 return 0 ;
}

If the user entered an A, the output would be:
The value of A is 65.

Additional Concerns with Garbage in
stdin
 When we were reading integers using scanf(), we didn’t

seem to have problems with the newline character, even
though the user was typing ENTER after the integer.

 That is because scanf() was looking for the next integer
and ignored the newline (whitespace).

 If we use scanf (“%d”, &num); to get an integer, the
newline is still stuck in the input stream.

 If the next item we want to get is a character, whether we
use scanf() or getchar(), we will get the newline.

 We have to take this into account and remove it.

EOF Predefined Constant
 getchar() is usually used to get characters from

a file until the end of the file is reached.
 The value used to indicate the end of file varies

from system to system. It is system
dependent.

 But, regardless of the system you are using,
there is a #define in the stdio library for a
symbolic integer constant called EOF.

 EOF holds the value of the end-of-file marker for
the system that you are using.

getchar() Example Using EOF
#include <stdio.h>
int main ()
{

int grade, aCount, bCount, cCount, dCount, fCount ;
aCount = bCount = cCount = dCount = fCount = 0 ;
while ((grade = getchar()) != EOF) {
 switch (grade) {

case ‘A’: aCount++; break ;
case ‘B’: bCount++; break ;
case ‘C’ : cCount++; break ;
case ‘D’: dCount++; break ;
case ‘F’: fCount++; break ;
default : break ;

 }
 }
 return 0 ;
}

