Assignment Operators

Topics
Increment and Decrement Operators
Assignment Operators
Debugging Tips
Reading
Sections 3.11 - 3.12

Increment and Decrement
Operators

The increment operator ++

The decrement operator --

Precedence: lower than (), but higher than * /
and %

Associativity: right to left

Increment and decrement operators can only be
applied to variables, not to constants or
expressions

Increment Operator

If we want to add one to a variable, we can say:
count = count + 1 ;

Programs often contain statements that
increment variables, so to save on typing, C
provides these shortcuts:

count++; OR ++count;
Both do the same thing. They change the value
of count by adding one to it.

Postincrement Operator

The position of the ++ determines when the value is
incremented. If the ++ is after the variable, then the
incrementing is done last (postincrementation).

int amount, count ;
count=3;
amount = 2 * count++ ;

amount gets the value of 2 * 3, which is 6, and then 1
gets added to count.

So, after executing the last line, amount is 6 and count is
4.

Preincrement Operator

If the ++ is before the variable, then the incrementing is
done first (preincrementation).

int amount, count ;
count=3;
amount = 2 * ++count ;

1 gets added to count first, then amount gets the value of
2 * 4, which is 8.
So, after executing the last line, amount is 8 and count is

Code Example Using ++

#include <stdio.h>
int main ()
{

inti=1;

/* count from 1 to 10 */

while (i<11)
printf (“%d ", i) ;
i++; /* same as ++i */

return 0 ;

}

Decrement Operator

If we want to subtract one from a variable, we can say:
count =count-1;

Programs often contain statements that decrement
variables, so to save on typing, C provides these
shortcuts:

count--; OR --count;
Both do the same thing. They change the value of count
by subtracting one from it.

Postdecrement Operator

The position of the -- determines when the value is
decremented. If the -- is after the variable, then the
decrementing is done last (postdecrementation).

int amount, count ;
count =3
amount = 2 * count-- ;

amount gets the value of 2 * 3, which is 6, and then
1 gets subtracted from count.

So, after executing the last line, amount is 6 and count is
2.

Predecrement Operator

If the -- is before the variable, then the decrementing is
done first (predecrementation).
int amount, count ;

count=3;
amount = 2 * --count ;

1 gets subtracted from count first, then amount gets the
value of 2 * 2, which is 4.

So, after executing the last line, amount is 4 and count is
2.

A Hand Trace Example

Code Value Answer
int answer, garbage = 4; 4 garbage
value = value + 1 ;

value++ ;

++value ;

answer = 2 * value++ ;
answer = ++value / 2 ;
value-- ;

--value ;

answer = --value * 2 ;
answer = value--/ 3 ;

Practice

Given
inta=1,b=2,¢c=3;

What is the value of this expression?

++a*b-c--

What are the new values of a, b, and c?

More Practice

Given
inta=1,b=2,¢c=3,d=4;

What is the value of this expression?

++b/c+a*d++

What are the new values of a, b, ¢, and d?

Assignment Operators

= 4= .= *= /= %=
Statement Equivalent Statement
a=a+2; a+=2;
a=a-3; a-=3;
a=a*2; a*=2;
a=al4; al=4;
a=a%?2; a%=2;
b=b+(c+2); b+=c+2;
d=d*(e-5); d*=e-5;

Practice with Assignment
Operators

inti=1,j=2,k=3,m=4;

Expression Value

i+=j+k

j*=k=m+5

k-=m/=j*2

Code Example Using /=and ++
Counting the Digits in an Integer

#include <stdio.h>

int main ()

{
int num, temp, digits =0 ;
temp = num = 4327 ;
while (temp >0)

printf (“%d\n”, temp) ;

temp /=10 ;

digits++ ;
}
printf (“There are %d digits in %d.\n", digits, num) ;
return 0 ;

Debugging Tips

Trace your code by hand (a hand trace),
keeping track of the value of each variable.
Insert temporary printf() statements so you can
see what your program is doing.

= Confirm that the correct value(s) has been read in.

= Check the results of arithmetic computations
immediately after they are performed.

