
Assignment Operators
Topics

 Increment and Decrement Operators
 Assignment Operators
 Debugging Tips

 Reading

 Sections 3.11 - 3.12

Increment and Decrement
Operators
 The increment operator ++
 The decrement operator --
 Precedence: lower than (), but higher than * /

and %
 Associativity: right to left
 Increment and decrement operators can only be

applied to variables, not to constants or
expressions

Increment Operator
 If we want to add one to a variable, we can say:
 count = count + 1 ;
 Programs often contain statements that

increment variables, so to save on typing, C
provides these shortcuts:

 count++ ; OR ++count ;
 Both do the same thing. They change the value

of count by adding one to it.

Postincrement Operator
 The position of the ++ determines when the value is

incremented. If the ++ is after the variable, then the
incrementing is done last (postincrementation).

 int amount, count ;

 count = 3 ;
 amount = 2 * count++ ;

 amount gets the value of 2 * 3, which is 6, and then 1
gets added to count.

 So, after executing the last line, amount is 6 and count is
4.

Preincrement Operator
 If the ++ is before the variable, then the incrementing is

done first (preincrementation).

 int amount, count ;

 count = 3 ;
 amount = 2 * ++count ;

 1 gets added to count first, then amount gets the value of
2 * 4, which is 8.

 So, after executing the last line, amount is 8 and count is
4.

Code Example Using ++
 #include <stdio.h>
 int main ()
 {
 int i = 1 ;

 /* count from 1 to 10 */
 while (i < 11)
 {
 printf (“%d ”, i) ;
 i++ ; /* same as ++i */
 }
 return 0 ;
 }

 If we want to subtract one from a variable, we can say:
 count = count - 1 ;
 Programs often contain statements that decrement

variables, so to save on typing, C provides these
shortcuts:

 count-- ; OR --count ;
 Both do the same thing. They change the value of count

by subtracting one from it.

Decrement Operator

Postdecrement Operator
 The position of the -- determines when the value is

decremented. If the -- is after the variable, then the
decrementing is done last (postdecrementation).

 int amount, count ;

 count = 3 ;
 amount = 2 * count-- ;

 amount gets the value of 2 * 3, which is 6, and then
1 gets subtracted from count.

 So, after executing the last line, amount is 6 and count is
2.

Predecrement Operator
 If the -- is before the variable, then the decrementing is

done first (predecrementation).

 int amount, count ;

 count = 3 ;
 amount = 2 * --count ;

 1 gets subtracted from count first, then amount gets the
value of 2 * 2, which is 4.

 So, after executing the last line, amount is 4 and count is
2.

A Hand Trace Example

 Code Value Answer

 int answer, garbage = 4; 4 garbage
 value = value + 1 ;
 value++ ;
 ++value ;
 answer = 2 * value++ ;
 answer = ++value / 2 ;
 value-- ;
 --value ;
 answer = --value * 2 ;
 answer = value-- / 3 ;

Practice
 Given
 int a = 1, b = 2, c = 3 ;

 What is the value of this expression?

 ++a * b - c--

 What are the new values of a, b, and c?

More Practice
 Given
 int a = 1, b = 2, c = 3, d = 4 ;

 What is the value of this expression?

 ++b / c + a * d++

 What are the new values of a, b, c, and d?

Assignment Operators
 = += -= *= /= %=
 Statement Equivalent Statement
 a = a + 2 ; a += 2 ;
 a = a - 3 ; a -= 3 ;
 a = a * 2 ; a *= 2 ;
 a = a / 4 ; a /= 4 ;
 a = a % 2 ; a %= 2 ;
 b = b + (c + 2) ; b += c + 2 ;
 d = d * (e - 5) ; d *= e - 5 ;

Practice with Assignment
Operators
 int i = 1, j = 2, k = 3, m = 4 ;

 Expression Value
 i += j + k

 j *= k = m + 5

 k -= m /= j * 2

Code Example Using /= and ++
Counting the Digits in an Integer
 #include <stdio.h>
 int main ()
 {
 int num, temp, digits = 0 ;
 temp = num = 4327 ;

 while (temp > 0)
 {

 printf (“%d\n”, temp) ;
 temp /= 10 ;
 digits++ ;
 }
 printf (“There are %d digits in %d.\n”, digits, num) ;
 return 0 ;
 }

Debugging Tips
 Trace your code by hand (a hand trace),

keeping track of the value of each variable.
 Insert temporary printf() statements so you can

see what your program is doing.
 Confirm that the correct value(s) has been read in.
 Check the results of arithmetic computations

immediately after they are performed.

