
The while Looping Structure
Topics

 The while Loop
 Program Versatility

 Sentinel Values and Priming Reads
 Checking User Input Using a while Loop

Reading

 Section 3.7

Review: Repetition Structure

 A repetition structure allows the programmer to
specify that an action is to be repeated while some
condition remains true.

 There are three repetition structures in C, the while
loop, the for loop, and the do-while loop.

The while Repetition Structure

while (condition)
{
 statement(s)
}

The braces are not required if the loop body
contains only a single statement. However, they
are a good idea and are required by the 104 C
Coding Standards.

Example
 while (children > 0)
 {
 children = children - 1 ;
 cookies = cookies * 2 ;
 }

Good Programming Practice
 Always place braces around the body of a while

loop.
 Advantages:

 Easier to read
 Will not forget to add the braces if you go back and

add a second statement to the loop body
 Less likely to make a semantic error

 Indent the body of a while loop 3 to 5 spaces --
be consistent!

Another while Loop Example
 Problem: Write a program that calculates the

average exam grade for a class of 10 students.
 What are the program inputs?

 the exam grades

 What are the program outputs?
 the average exam grade

The Pseudocode
 <total> = 0
 <grade_counter> = 1

 While (<grade_counter> <= 10)
 Display “Enter a grade: ”

Read <grade>
 <total> = <total> + <grade>

 <grade_counter> = <grade_counter> + 1
 End_while
 <average> = <total> / 10
 Display “Class average is: “, <average>

 #include <stdio.h>
 int main ()
 {
 int counter, grade, total, average ;
 total = 0 ;
 counter = 1 ;
 while (counter <= 10)
 {
 printf (“Enter a grade : “) ;
 scanf (“%d”, &grade) ;
 total = total + grade ;
 counter = counter + 1 ;
 }
 average = total / 10 ;
 printf (“Class average is: %d\n”, average) ;
 return 0 ;
 }

The C Code

Versatile?
 How versatile is this program?
 It only works with class sizes of 10.
 We would like it to work with any class size.
 A better way :

 Ask the user how many students are in the class.
Use that number in the condition of the while loop
and when computing the average.

New Pseudocode
<total> = 0
<grade_counter> = 1

Display “Enter the number of students: “
Read <num_students>
While (<grade_counter> <= <num_students>)
 Display “Enter a grade: ”
 Read <grade>
 <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
End_while
<average> = <total> / <num_students>
Display “Class average is: “, <average>

New C Code
 #include <stdio.h>
 int main ()
 {
 int numStudents, counter, grade, total, average ;
 total = 0 ;
 counter = 1 ;
 printf (“Enter the number of students: “) ;
 scanf (“%d”, &numStudents) ;
 while (counter <= numStudents) {
 printf (“Enter a grade : “) ;
 scanf (“%d”, &grade) ;
 total = total + grade ;
 counter = counter + 1 ;
 }
 average = total / numStudents ;
 printf (“Class average is: %d\n”, average) ;
 return 0 ;
 }

Why Bother to Make It Easier?
 Why do we write programs?

 So the user can perform some task
 The more versatile the program, the more

difficult it is to write. BUT it is more useable.
 The more complex the task, the more

difficult it is to write. But that is often what a
user needs.

 Always consider the user first.

Using a Sentinel Value
 We could let the user keep entering grades and

when he’s done enter some special value that
signals us that he’s done.

 This special signal value is called a sentinel
value.

 We have to make sure that the value we choose
as the sentinel isn’t a legal value. For example,
we can’t use 0 as the sentinel in our example as
it is a legal value for an exam score.

The Priming Read
 When we use a sentinel value to control a while

loop, we have to get the first value from the user
before we encounter the loop so that it will be
tested and the loop can be entered.

 This is known as a priming read.
 We have to give significant thought to the

initialization of variables, the sentinel value, and
getting into the loop.

New Pseudocode
<total> = 0
<grade_counter> = 1

Display “Enter a grade: “
Read <grade>
While (<grade> != -1)
 <total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1
 Display “Enter another grade: ”
 Read <grade>
End_while
<average> = <total> / <grade_counter>
Display “Class average is: “, <average>

New C Code
#include <stdio.h>
int main ()
{
 int counter, grade, total, average ;

 total = 0 ;
 counter = 1 ;
 printf(“Enter a grade: “) ;
 scanf(“%d”, &grade) ;
 while (grade != -1) {
 total = total + grade ;
 counter = counter + 1 ;
 printf(“Enter another grade: “) ;
 scanf(“%d”, &grade) ;
 }
 average = total / counter ;
 printf (“Class average is: %d\n”, average) ;
 return 0 ;
}

Final “Clean” C Code
#include <stdio.h>
int main ()
{
 int counter ; /* counts number of grades entered */
 int grade ; /* individual grade */
 int total; /* total of all grades */
 int average ; /* average grade */

 /* Initializations */

 total = 0 ;
 counter = 1 ;

 /* Get grades from user */
 /* Compute grade total and number of grades */

 printf(“Enter a grade: “) ;
 scanf(“%d”, &grade) ;
 while (grade != -1) {
 total = total + grade ;
 counter = counter + 1 ;
 printf(“Enter another grade: “) ;
 scanf(“%d”, &grade) ;
 }

 /* Compute and display the average grade */

 average = total / counter ;
 printf (“Class average is: %d\n”, average) ;

 return 0 ;
}

Using a while Loop to Check User Input
 #include <stdio.h>
 int main ()
 {
 int number ;
 printf (“Enter a positive integer : “) ;
 scanf (“%d”, &number) ;
 while (number <= 0)
 {
 printf (“\nThat’s incorrect. Try again.\n”) ;
 printf (“Enter a positive integer: “) ;
 scanf (“%d”, &number) ;
 }
 printf (“You entered: %d\n”, number) ;
 return 0 ;
 }

