Arithmetic Operators

Topics
Arithmetic Operators
Operator Precedence
Evaluating Arithmetic Expressio
In-class Project
Incremental Programming

Reading
Section 2.5

Arithmetic Operators in C \

Name Operator Example S

Addition + num1 + num2

Subtraction - initial - spent

Multiplication * fathoms * 6

Division / sum / count

Modulus % m % n
Division

If both operands of a division expression
are integers, you will get an integer
answer. The fractional portion is
thrown away.

Examples : 17 15 =3
4/3=1
= N . 35/9=3

Division (con’t)

Division where at least one operand is a
floating point number will produce a
floating point answer.

Examples : 170/ 5 =34 &' J
4 /32 =125
35.2 / 9.1 = 3.86813

What happens? The integer operand is
temporarily converted to a floating point,
then the division is performed.

Division By Zero

Division by zero is mathematically
undefined.

If you allow division by zero in a
program, it will cause a fatal
error. Your program will
terminate execution and give an

"ﬁ error message.

. L
Non-fatal errors do not cause
program termination, just produce
incorrect results.

\

Modulus

The expression m % n yields the integer
remainder after m is divided by n.
Modulus is an integer operation -- both
operands MUST be integers.

Examples : 17 %5 = 2 7 4
6%3 =0 &/
9%2 =1 4
5%8 =5 o

Uses for Modulus

Used to determine if an integer value is even or
odd

5%2=1»0dd 4%2=0+>even

If you take the modulus by 2 of an integer, a
result of 1 means the number is odd and a result
of 0 means the number is even.

The Euclid’'s GCD Algorithm (done earlier)

Arithmetic Operators
Rules of Operator Precedence

Operator(s) Precedence & Associativity
() Evaluated first. If nested (embedded),
innermost first. If on same level, left to right.
* / 0/ Evaluated second. If there are several,
o evaluated left to right
+ Evaluated third. If there are several, evaluated

left to right.

= Evaluated last, right to left.

)
(

Using Parentheses

Use parentheses to change the order in which an G~
expression is evaluated.

a+b*c Would multiply b * c first, then add a to
the result.

If you really want the sum of a and b to be

multiplied by c, use parentheses to force the

evaluation to be done in the order you want.
(@a+b)*c

Also use parentheses to clarify a complex

expression.

Practice With Evaluating Expressions

Given integer variables a, b, c, d, and e,

wherea=1,b=2,c=3,d=4,

evaluate the following expressions:
atb-c+d
a*bl/c
1+a*b%c
a+d%b-c
e=b=d+c/b-a

A Sample Project

Let’s write a program that computes and
displays the volume and surface area of a
cube.
Procedure:
= Use the pseudocode that we developed in
“Algorithms, Part 3 of 3”
= Convert the algorithm to code
= Clean up the code (spacing, indentation, /
commenting)

The Box - Pseudocode

Display “Enter the height: “

Read <height>

While (<height> <= 0)
Display “The height must be > 0”
Display “Enter the height: “
Read <height>

End_while
="

L %

The Box - Pseudocode (con’t)

Display “Enter the width: “

Read <width>

While (<width> <= 0)
Display “The width must be > 0”
Display “Enter the width: “
Read <width>

End_while

The Box - Pseudocode (con’t)

Display “Enter the depth: “

Read <depth>

While (<depth> <= 0)
Display “The depth must be > 0”
Display “Enter the depth: “
Read <depth>

End_while }’P
- o

|~

The Box - Pseudocode (con’t)

<volume> = <height> X <width> X <depth>

<surface1> = <height> X <width>
<surface2> = <width> X <depth>
<surface3> = <height> X <depth>
<surface area>= 2 X (<surface1> + <surface2> + <surface3>)

R

|~

The Box - Pseudocode (con’t)

Display “Height = “, <height>
Display “Width = “, <width>
Display “Depth = “, <depth>
Display “Volume = “, <volume>

Display “Surface Area = “, <surface area>

T

L %

Good Programming Practice

It is best not to take the “big bang” approach to
coding.

Use an incremental approach by writing your
code in incomplete, yet working, pieces.

For example, for your projects, 71 A
= Don’t write the whole program at once. | \

= Just write enough to display the user prompt
on the screen.

= Get that part working first (compile and run).

= Next, write the part that gets the value from the
user, and then just print it out.

Good Programming Practice

= Get that working (compile and run).

= Next, change the code so that you use the
value in a calculation and print out the answer.

= Get that working (compile and run).

= Continue this process until you have the final (
version. —1

= Get the final version working.
Always have a working =
version of your program!

Using the Incremental Approach

Let’s think about how we could have developed
the volume and surface area program

W
3
Y

