
Arithmetic Operators

Topics

 Arithmetic Operators
 Operator Precedence
 Evaluating Arithmetic Expressions
 In-class Project
 Incremental Programming

Reading

 Section 2.5

Arithmetic Operators in C

 Name Operator Example

 Addition + num1 + num2

 Subtraction - initial - spent

 Multiplication * fathoms * 6

 Division / sum / count

 Modulus % m % n

Division
 If both operands of a division expression

are integers, you will get an integer
answer. The fractional portion is
thrown away.

 Examples : 17 / 5 = 3
 4 / 3 = 1
 35 / 9 = 3

Division (con’t)
 Division where at least one operand is a

floating point number will produce a
floating point answer.

 Examples : 17.0 / 5 = 3.4
 4 / 3.2 = 1.25
 35.2 / 9.1 = 3.86813
 What happens? The integer operand is

temporarily converted to a floating point,
then the division is performed.

Division By Zero

 Division by zero is mathematically
undefined.

 If you allow division by zero in a
program, it will cause a fatal
error. Your program will
terminate execution and give an
error message.

 Non-fatal errors do not cause
program termination, just produce
incorrect results.

Modulus
 The expression m % n yields the integer

remainder after m is divided by n.
 Modulus is an integer operation -- both

operands MUST be integers.
 Examples : 17 % 5 = 2
 6 % 3 = 0
 9 % 2 = 1
 5 % 8 = 5

 Used to determine if an integer value is even or
odd

 5 % 2 = 1 odd 4 % 2 = 0 even

 If you take the modulus by 2 of an integer, a
result of 1 means the number is odd and a result
of 0 means the number is even.

 The Euclid’s GCD Algorithm (done earlier)

 Uses for Modulus

Arithmetic Operators
Rules of Operator Precedence

Evaluated third. If there are several, evaluated
left to right.+ -

Evaluated last, right to left.=

Evaluated second. If there are several,
evaluated left to right* / %

Evaluated first. If nested (embedded),
innermost first. If on same level, left to right.()

Precedence & AssociativityOperator(s)

Using Parentheses
 Use parentheses to change the order in which an

expression is evaluated.

 a + b * c Would multiply b * c first, then add a to
the result.

 If you really want the sum of a and b to be
multiplied by c, use parentheses to force the
evaluation to be done in the order you want.

 (a + b) * c
 Also use parentheses to clarify a complex

expression.

Practice With Evaluating Expressions

 Given integer variables a, b, c, d, and e,
where a = 1, b = 2, c = 3, d = 4,

 evaluate the following expressions:

 a + b - c + d
 a * b / c
 1 + a * b % c
 a + d % b - c
 e = b = d + c / b - a

 Let’s write a program that computes and
displays the volume and surface area of a
cube.

 Procedure:
 Use the pseudocode that we developed in

“Algorithms, Part 3 of 3”
 Convert the algorithm to code
 Clean up the code (spacing, indentation,

commenting)

A Sample Project

The Box - Pseudocode

Display “Enter the height: “
Read <height>
While (<height> <= 0)
 Display “The height must be > 0”
 Display “Enter the height: “
 Read <height>
End_while

The Box - Pseudocode (con’t)

Display “Enter the width: “
Read <width>
While (<width> <= 0)
 Display “The width must be > 0”
 Display “Enter the width: “
 Read <width>
End_while

The Box - Pseudocode (con’t)

Display “Enter the depth: “
Read <depth>
While (<depth> <= 0)
 Display “The depth must be > 0”
 Display “Enter the depth: “
 Read <depth>
End_while

The Box - Pseudocode (con’t)
<volume> = <height> X <width> X <depth>

<surface1> = <height> X <width>
<surface2> = <width> X <depth>
<surface3> = <height> X <depth>
<surface area> = 2 X (<surface1> + <surface2> + <surface3>)

The Box - Pseudocode (con’t)

Display “Height = “, <height>

Display “Width = “, <width>

Display “Depth = “, <depth>

Display “Volume = “, <volume>

Display “Surface Area = “, <surface area>

Good Programming Practice
 It is best not to take the “big bang” approach to

coding.
 Use an incremental approach by writing your

code in incomplete, yet working, pieces.
 For example, for your projects,

 Don’t write the whole program at once.
 Just write enough to display the user prompt

on the screen.
 Get that part working first (compile and run).
 Next, write the part that gets the value from the

user, and then just print it out.

Always have a working
version of your program!

Good Programming Practice
 Get that working (compile and run).
 Next, change the code so that you use the

value in a calculation and print out the answer.
 Get that working (compile and run).
 Continue this process until you have the final

version.
 Get the final version working.

Using the Incremental Approach
 Let’s think about how we could have developed

the volume and surface area program
incrementally.

