Variables in C

Topics

Naming Variables
Declaring Variables

Using Variables

The Assignment Statement

Reading
Sections 2.3-2.4

What Are Variables in C?

Variables in C have the same meaning as
variables in algebra. That is, they represent
some unknown, or variable, value.
x=a+b
z+2=3(y-5)

Remember that variables in algebra are
represented by a single alphabetic character.

Naming Variables

Variables in C may be given
representations containing multiple
characters. But there are rules for these
representations.

Variable names (identifiers) in C

= May only consist of letters, digits, and
underscores

= May be as long as you like, but only tk
31 characters are significant

= May not begin with a digit
= May not be a C reserved word (keyword)

Reserved Words (Keywords) in C

auto break int long
case char register return
const continue short signed
default do sizeof static
double else struct switch
enum extern tvpedef union
float for yp . .
goto i unsigned void
volatile while

Naming Conventions

C programmers generally agree on the following
conventions for naming variables.
= Begin variable names with lowercase letters

= use meaningful <,

identifiers ?f% ‘>

\9)
= Separate “words” within identifiers with underscores or
mixed upper and lower case.
m Examples: surfaceArea surface_Area
surface_area

= Be consistent!

Naming Conventions (con’t)

Use all uppercase for symbolic constants
(used in #define preprocessor directives).

Note: symbolic constants are not variables,
but make the program easier to read.

Examples:

#define Pl 3.14159
#define AGE 52

Case Sensitivity

C is case sensitive

= |t matters whether an identifier, such as a
variable name, is uppercase or lowercase.

= Example:
area
Area
AREA
ArEa

are all seen as different variables by the
compiler.

Which Are Legal Identifiers?

AREA area_under_the_curve
3D num45

Last-Chance #values

x_yt3 pi

num$ %done

lucky***

Declaring Variables

Before using a variable, you must give the
compiler some information about the variable;
i.e., you must declare it.

The declaration statement includes the data
type of the variable.

Examples of variable declarations:
int meatballs ;
float area;

Declaring Variables (con’t)

When we declare a variable

= Space is set aside in memory to hold a value of the
specified data type

= That space is associated with the variable name
= That space is associated with a unique address
Visualization of the declaration

int meatballs ;
meatballs

FEO7 int

More About Variables

C has three basic predefined data types:

Integers (whole numbers)

= int, long int, short int, unsigned int

Floating point (real numbers)

= float, double

Characters

= char

At this point, you need only be concerned with
the data types that are bolded.

Notes About Variables

You must not use a variable
until you somehow give it a

value.

You can not assume that the \\
variable will have a value

before you give it one.

= Some compilers do, others do

not! This is the source of many
errors that are difficult to find.

K4

Using Variables: Initialization .4 &

Variables may be be given initial values, or
initialized, when declared. Examples:

length
intlength=7; |:>

diameter

float diameter = 5.9 ; |:>

char initial = ‘A’ ; initial

=)

Using Variables: Initialization

Do not “hide” the initialization

= put initialized variables on a separate line

= a comment is always a good idea

= Example:
int height ; I* rectangle height */
int width =6 ; /* rectangle width */
int area ; I* rectangle area */

NOT int height, width = 6, area ;

Using Variables: Assignment

Variables may have values assigned to them
through the use of an assignment statement.
Such a statement uses the assignment operator
This operator does not denote equality. It assigns
the value of the right-hand side of the statement
(the expression) to the variable on the left-hand
side. y
Examples:

e
diameter =5.9 ; /
area = length * width ; ”

Note that only single variables may appear on the
left-hand side of the assignment operator.

Functions

It is necessary for us to use some functions to write our
first programs, but we are not going to explain functions
in great detail at this time.

%wﬁam are parts of programs that perform a certain
task and we have to give them some information so the
function can do the task.

We will show you how to use the functions as we go
through the course and later on will show you how to
create your own.

Displaying Variables

Variables hold values that we occasionally want
to show the person using the program.

We have a function called printf() that will allow
us to do that.

The function printf needs two pieces of
information to display things.

= How to display it \x\ﬁ.
= What to display) —
printf(“%f\n”, diameter);

>

printf(“%f\n”, diameter);

The name of the function is “printf”.
Inside the parentheses are:
= print specification, where we are going to display:
a floating point value (“%f")
We want to have the next thing started on a new line (“\n”).
= We want to display the contents of the variable
diameter.

printf() has many other capabilities.

Example: Declarations and Assignments

#include <stdio.h> e
int main(void) [g;i;j
{ o fathoms
int inches, feet, fathoms ; [_garbage
fathoms
fathoms =7 ; T
feet
feet =6 * fathoms ; == a2
inches

@ inches = 12 * feet ; =0 (504)

Example: Declarations and Assignments

printf (“Its depth at sea: \n”) ;

printf (* %d fathoms \n”, fathoms) ;
printf (* %d feet \n”, feet) ;

printf (“ %d inches \n”, inches) ;

return 0 ;

Enhancing Our Example

What if the depth were really 5.75
fathoms? Our program, as it is, couldn’t
handle it.

Unlike integers, floating point numbers

can contain decimal portions. So, let's

use floating point, rather than integer.

Let’s also ask the user to enter the -
number of fathoms, rather than
“hard-coding” it in by using the scanf(
) function. S

Enhanced Program

#include <stdio.h>
int main (void)
{

float inches, feet, fathoms ;

printf (“Enter the depth in fathoms :) ;
scanf (“%f”, &fathoms) ;

feet = 6 * fathoms ;

inches =12 * feet ;

printf (“Its depth at sea: \n”) ;

printf (“ %f fathoms \n”, fathoms) ;
printf (“ %f feet \n”, feet) ;

printf (“ %f inches \n”, inches) ;
return 0 ;

scanf (“%f”, &fathoms) ; "

The scanf() function also needs two items: €
= The input specification “%f”. (Never put a “\n”
into the input specification.)
= The address of where to store the information.
(We can input more than one item at a time if
we wish, as long as we specify it correctly.)
Notice the “&” in front of the variable name.
It says to use the address of the variable to
hold the information that the user enters.

Note About Input and Output

Whenever we wish to display values or get
values from the user, we have a format problem.

We can only input characters, not values.
We can only display characters, not values.

The computer stores values in numeric
variables.

printf() and scan() will automatically convert
things for us correctly.

Final “Clean” Program

#include <stdio.h>

#define FEET_PER_FATHOM 6
#define INCHES_PER_FOOT 12

int main(void)
{
float inches ; I* number of inches deep */
float feet ; I* number of feet deep *
float fathoms ; /* number of fathoms deep */

I* Get the depth in fathoms from the user */

printf (“Enter the depth in fathoms :) ;
scanf (“%f”, &fathoms) ;

Final “Clean” Program

I* Convert the depth to inches */

feet =FEET_PER_FATHOM * fathoms ;
inches = INCHES_PER_FOOT * feet ;

I* Display the results */

printf (“Its depth at sea: \n”) ;

printf (“ %f fathoms \n”, fathoms) ;
printf (“ %f feet \n”, feet);

printf (“ %f inches \n”, inches);

return 0 ;

Good Programming Practices

Place each variable declaration on its own line
with a descriptive comment.

Place a comment before each logical “chunk”
of code describing what it does.

Do not place a comment on the same line as
code (with the exception of variable
declarations).

Use spaces around all arithmetic and
assignment operators.

Use blank lines to enhance readability.

Good Programming Practices

Place a blank line between the last variable
declaration and the first executable statement of
the program.

Indent the body of the program 3 to 5 spaces --
be consistent!

Comments should explain why you are doing

something, not what you are doing it.

a=a+1 /*addonetoa*/ /* WRONG */
/* count new student */ /* RIGHT*/

Another Sample Program

#include <stdio.h>

#define Pl 3.14159

int main (void)

{
float radius = 3.0;
float area;

area = Pl * radius * radius;
printf(“The area is %f.\n”, area);

return 0 ;

