
Variables in C
Topics

 Naming Variables
 Declaring Variables
 Using Variables
 The Assignment Statement

Reading

 Sections 2.3 - 2.4

What Are Variables in C?
 Variables in C have the same meaning as

variables in algebra. That is, they represent
some unknown, or variable, value.

x = a + b
z + 2 = 3(y - 5)

 Remember that variables in algebra are
represented by a single alphabetic character.

Naming Variables
 Variables in C may be given

representations containing multiple
characters. But there are rules for these
representations.

 Variable names (identifiers) in C
 May only consist of letters, digits, and

underscores
 May be as long as you like, but only the first

31 characters are significant
 May not begin with a digit
 May not be a C reserved word (keyword)

Reserved Words (Keywords) in C

 auto break
 case char
 const continue
 default do
 double else
 enum extern
 float for
 goto if

 int long
 register return
 short signed
 sizeof static
 struct switch
 typedef union
 unsigned void
 volatile while

 C programmers generally agree on the following
conventions for naming variables.
 Begin variable names with lowercase letters

 Use meaningful
 identifiers

 Separate “words” within identifiers with underscores or
mixed upper and lower case.

 Examples: surfaceArea surface_Area
 surface_area

 Be consistent!

Naming Conventions

Naming Conventions (con’t)
 Use all uppercase for symbolic constants

(used in #define preprocessor directives).
 Note: symbolic constants are not variables,

but make the program easier to read.
 Examples:

 #define PI 3.14159
 #define AGE 52

Case Sensitivity
 C is case sensitive

 It matters whether an identifier, such as a
variable name, is uppercase or lowercase.

 Example:
area
Area
AREA
ArEa

are all seen as different variables by the
compiler.

Which Are Legal Identifiers?
 AREA area_under_the_curve
 3D num45
 Last-Chance #values
 x_yt3 pi
 num$ %done
 lucky***

Declaring Variables
 Before using a variable, you must give the

compiler some information about the variable;
i.e., you must declare it.

 The declaration statement includes the data
type of the variable.

 Examples of variable declarations:
 int meatballs ;
 float area ;

Declaring Variables (con’t)
 When we declare a variable

 Space is set aside in memory to hold a value of the
specified data type

 That space is associated with the variable name
 That space is associated with a unique address

 Visualization of the declaration
 int meatballs ;

meatballs

FE07

garbage

 int

More About Variables
C has three basic predefined data types:

 Integers (whole numbers)
 int, long int, short int, unsigned int

 Floating point (real numbers)
 float, double

 Characters
 char

 At this point, you need only be concerned with
the data types that are bolded.

Notes About Variables
 You must not use a variable

until you somehow give it a
value.

 You can not assume that the
variable will have a value
before you give it one.
 Some compilers do, others do

not! This is the source of many
errors that are difficult to find.

Using Variables: Initialization
 Variables may be be given initial values, or

initialized, when declared. Examples:

int length = 7 ;

float diameter = 5.9 ;

char initial = ‘A’ ;

7

5.9

‘A’

length

diameter

initial

Using Variables: Initialization
 Do not “hide” the initialization

 put initialized variables on a separate line
 a comment is always a good idea
 Example:

int height ; /* rectangle height */
int width = 6 ; /* rectangle width */
int area ; /* rectangle area */

 NOT int height, width = 6, area ;

 Variables may have values assigned to them
through the use of an assignment statement.

 Such a statement uses the assignment operator
=

 This operator does not denote equality. It assigns
the value of the right-hand side of the statement
(the expression) to the variable on the left-hand
side.

 Examples:
diameter = 5.9 ;
area = length * width ;

Note that only single variables may appear on the
left-hand side of the assignment operator.

Using Variables: Assignment

Functions
 It is necessary for us to use some functions to write our

first programs, but we are not going to explain functions
in great detail at this time.

Functions are parts of programs that perform a certain
task and we have to give them some information so the
function can do the task.

 We will show you how to use the functions as we go
through the course and later on will show you how to
create your own.

Displaying Variables
 Variables hold values that we occasionally want

to show the person using the program.
 We have a function called printf() that will allow

us to do that.
 The function printf needs two pieces of

information to display things.
 How to display it
 What to display

 printf(“%f\n”, diameter);

printf(“%f\n”, diameter);
 The name of the function is “printf”.
 Inside the parentheses are:

 print specification, where we are going to display:
 a floating point value (“%f”)
 We want to have the next thing started on a new line (“\n”).

 We want to display the contents of the variable
diameter.

 printf() has many other capabilities.

Example: Declarations and Assignments

 #include <stdio.h>
 int main(void)
 {
 int inches, feet, fathoms ;

inches

feet

fathoms

42

7

garbage

504

fathoms
garbage

feet

garbage

inches

fathoms = 7 ;

feet = 6 * fathoms ;

inches = 12 * feet ;

Example: Declarations and Assignments

 printf (“Its depth at sea: \n”) ;
 printf (“ %d fathoms \n”, fathoms) ;
 printf (“ %d feet \n”, feet) ;
 printf (“ %d inches \n”, inches) ;

 return 0 ;
 }

Enhancing Our Example
 What if the depth were really 5.75

fathoms? Our program, as it is, couldn’t
handle it.

 Unlike integers, floating point numbers
can contain decimal portions. So, let’s
use floating point, rather than integer.

 Let’s also ask the user to enter the
number of fathoms, rather than
“hard-coding” it in by using the scanf(
) function.

Enhanced Program
#include <stdio.h>
int main (void)
{
 float inches, feet, fathoms ;

 printf (“Enter the depth in fathoms : ”) ;
 scanf (“%f”, &fathoms) ;
 feet = 6 * fathoms ;
 inches = 12 * feet ;
 printf (“Its depth at sea: \n”) ;
 printf (“ %f fathoms \n”, fathoms) ;
 printf (“ %f feet \n”, feet) ;
 printf (“ %f inches \n”, inches) ;
 return 0 ;
}

scanf (“%f”, &fathoms) ;
 The scanf() function also needs two items:

 The input specification “%f”. (Never put a “\n”
into the input specification.)

 The address of where to store the information.
(We can input more than one item at a time if
we wish, as long as we specify it correctly.)

 Notice the “&” in front of the variable name.
It says to use the address of the variable to
hold the information that the user enters.

Note About Input and Output
 Whenever we wish to display values or get

values from the user, we have a format problem.
 We can only input characters, not values.
 We can only display characters, not values.
 The computer stores values in numeric

variables.
 printf() and scan() will automatically convert

things for us correctly.

Final “Clean” Program
#include <stdio.h>

#define FEET_PER_FATHOM 6
#define INCHES_PER_FOOT 12

int main(void)
{
 float inches ; /* number of inches deep */
 float feet ; /* number of feet deep */
 float fathoms ; /* number of fathoms deep */

 /* Get the depth in fathoms from the user */

 printf (“Enter the depth in fathoms : ”) ;
 scanf (“%f”, &fathoms) ;

Final “Clean” Program
 /* Convert the depth to inches */

 feet = FEET_PER_FATHOM * fathoms ;
 inches = INCHES_PER_FOOT * feet ;

 /* Display the results */

 printf (“Its depth at sea: \n”) ;
 printf (“ %f fathoms \n”, fathoms) ;
 printf (“ %f feet \n”, feet);
 printf (“ %f inches \n”, inches);

 return 0 ;
}

Good Programming Practices
 Place each variable declaration on its own line

with a descriptive comment.
 Place a comment before each logical “chunk”

of code describing what it does.
 Do not place a comment on the same line as

code (with the exception of variable
declarations).

 Use spaces around all arithmetic and
assignment operators.

 Use blank lines to enhance readability.

Good Programming Practices
 Place a blank line between the last variable

declaration and the first executable statement of
the program.

 Indent the body of the program 3 to 5 spaces --
be consistent!

 Comments should explain why you are doing
something, not what you are doing it.
a = a + 1 /* add one to a */ /* WRONG */
 /* count new student */ /* RIGHT*/

Another Sample Program
#include <stdio.h>

#define PI 3.14159

int main (void)
{
 float radius = 3.0;
 float area;

 area = PI * radius * radius;
 printf(“The area is %f.\n”, area);
 return 0 ;
}

