Processing Tutorials: In-Class Exercises
CMSC 101 / IS 101Y – Fall 2013
September 12, 2013

Processing Tutorial 1: Loops and Conditionals
Create a new Processing sketch and type in this code, based on the “for” loop example from Tuesday’s class slides:

final int DisplayWidth = 500;

final int DisplayHeight = 500;

final int MediumGray = 150;

int SquareWidth = 50;

int NumSquares = 3;

void setup() {

 int i;
 size (DisplayWidth, DisplayHeight);

 background(MediumGray);

 for (i=0 ; i < NumSquares ; i++) {

 rect (100*i, 50, SquareWidth, SquareWidth);
 }
}
Adapt this program to test that the number of squares will fit on the screen. If the squares won’t fit, print an error message using println() and don’t draw anything.
· Hint #1: You’ll need an “if” statement before the “for” loop.

· Hint #2: What is the width of the screen? Where (at what x coordinate) will the right-hand side of the last square appear? What is the relationship you want to guarantee between these two values?

Test your program for many different values of NumSquare to be sure that it works. (To change the value of NumSquares, just change “3” in “int NumSquares = 3” to some other value, and run the program again.)

When you get this to work, raise your hand and demonstrate to a member of the course staff. Do not continue to the next tutorial until you have shown your code to the course staff.

Processing Tutorial 2: Nested Loops
Modify the program you created in Tutorial 1 to create a “square of squares” that is NumSquares wide and NumSquares tall. You’ll need one loop nested within another. As with the previous program, you should make sure that the number of squares will fit on the screen.

When you get this to work, raise your hand and demonstrate to a member of the course staff.
Optional Processing Tutorial 3: Building Buttons
If you don’t have time to do this tutorial in class, you may want to work through it later – it will give you some useful hints for designing your solution to Processing Assignment 2!
Create a new program with a setup() function that draws two rectangles:

· a blue rectangle with its upper left corner at [100, 100] and its lower right corner at [150, 150] and

· a red rectangle from [100, 200] to [150, 250].

You’ll need to figure out what x, y, width, and height values will generate rectangles with these corners, and will need to use the “fill” command to change the fill color before drawing each picture.

Test this code and verify that it works before you continue to the next step!!
Next, adapt your program to detect a button push inside either of the rectangles by testing the “mousePressed” condition in the draw() function. When you detect a button push in the blue rectangle, print the string “Blue.” For a button push in the red rectangle, print the string “Red.”

The program will look something like this:

void draw() {

 if (mousePressed) {

 if (//condition that is true if “mouseX” and

 // “mouseY” are somewhere inside the blue

 // rectangle) {

 print (“Blue”);

 } else if (// condition that is true if

 // inside the red rectangle)

 print (“Red”);

 }

 }

}

Note: You may find that the program prints “Blue” or “Red” multiple times. This has to do with how Processing detects mouse events. Don’t worry about it.

When you get this to work, raise your hand and demonstrate to a member of the course staff.

Going Beyond: Extensions

If you finish the three tutorials above before the end of class (or want an additional challenge to practice on later), try the following extensions:
· Build a second button; use the buttons to choose between a 4x4 matrix of squares and a 4x4 matrix of circles. (This program will combine the code from tutorials #1 and #2 with the code from tutorial #3. You will probably need to make some adjustments so that the squares/circles aren’t drawn on top of your buttons.)
· Now change your buttons so that the blue button increases the number of squares and the red button decreases the number of squares.
· Turn each shape in the matrix a different color – either in an ordered progression or randomly.
