
1

Design Verification & Testing CMPE 418ATPG

ATPG

Automatic Test Pattern Generation has several purposes:
 It can generate test patterns.
 It can find redundant circuit logic.
 It can prove one implementation matches another.

Why is ATPG necessary?
Complete functional test is impractical.
Designer generated functional patterns typically provide only 70-75% SA coverage.
ATPG supplements to get coverage to >98%.

Scan is used to make testing of sequential circuits tractable.
Penalties include:

 Scan hardware occupies between 5-20% of silicon area.
 Performance impact.
 Additional pins, e.g., scan_in and scan_out.
 Slower to apply.

Allows combinational ATPG to be applied to test sequential logic.

2

Design Verification & Testing CMPE 418ATPG

Binary Decision Trees

The leaves represent the output of the good machine.

All ATPG algorithms implicitly search this tree, and in the worst case, must examine the
entire tree to prove a fault is untestable.

Note that untestable faults do not affect the circuit's logic function.

Algorithms that are able to search the entire tree are called complete.

A

B
C

D A A

B B B B

C C C CC C C C

0 1 1 0 1 0 0 1leaves
2num_PIs

3

Design Verification & Testing CMPE 418ATPG

Binary Decision Diagrams

The maxterms and minterms are the product of the visited nodes.

Follow path from source to sink node - products of literals along path gives Boolean value
at sink.

Unfortunately, the order in which the PIs are expanded in the BDD dramatically
effects the compute time of algorithms that use them.

A

B
C

D A A

leaves
2 0 1

B B

C C

B

C C

B

4

Design Verification & Testing CMPE 418ATPG

ATPG Algebras

Boolean set notation that is capable of representing both good and faulty machines simulta-
neously. Need only 1 pass of ATPG to solve both.

Roth uses a 5-valued algebra.
Muth later showed that testing FSMs required an expansion of X.

Symbol Roth's algebra Muth's algebra

Good Failing Good Failing

D 1 0 1 0

D 0 1 0 1

0 0 0 0 0

1 1 1 1 1

X X X X X

G0 - - 0 X

G1 - - 1 X

F0 - - X 0

F1 - - X 1

5

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

 Exhaustive Algorithm:

For n-input circuit, generate all 2n input patterns.

Infeasible, unless circuit is partitioned into cones for logic, with < 15 inputs.

 Random Pattern Generation

Used to get tests for 60-80% of the faults. The D-algorithm or other ATPG algorithms
used for the rest.

Fault simulation is necessary in order to select useful patterns.

Weighted random patterns: 0 and 1 are not equally likely.

6

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

Flow chart for RPG method

Start

Set input probabilities (initially, p(0) and p(1) are 1/2)

Generate a random vector

Simulate faults

Check
coverage

Change probabilities

Inadequate No new fault tested
discard vector

Done

7

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

• Symbolic (Boolean Difference) Symbolic (Boolean Difference):

Shannon's Expansion Theorem: a Boolean function F(X1, X2, ..., Xn) can be expanded

about any variable, say X2, as:

Let g = G(X1, X2, ..., Xn) represent the function at the fault site:

F X1 X2 … Xn, , ,() X2 F X1 1 … Xn, , ,()⋅ X2 F X1 0 … Xn, , ,()⋅+=

X1

X2

Xn

g

fault site

fi

fj

8

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

Let fj = Fj(g, X1, X2, ..., Xn), then the Boolean difference is:

Fault detection requirements are expressed as:

 G(X1, X2, ..., Xn) = 1

Due to high complexity of Boolean difference, it is not efficient for large circuits.

g∂

∂Fj
Fj 1 X, 1 X2… Xn, ,() Fj 0 X, 1 … Xn, ,()⊕=

g∂

∂Fj
Fj 1 X, 1 X2… Xn, ,() Fj 0 X, 1 … Xn, ,()⊕ 1= =

9

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

 Path Sensitization Methods (preferred method):
Three steps:
 Fault Activation: Force tested node to opposite of fault value.
 Fault Propagation: Also called fault sensitization. Propagate the effect to one or

more POs.
 Line justification: Justify internal signal assignments made to activate and sensitize

faults.

Steps (b) and (c) may result in a conflict, i.e., different values assigned to the same signal,
and require backtracking.

If we target B SA0, fault activation requires B = 1, f = D and g = D.

A

B

C

E

SA0

f

g

h

i
j k L

10

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

 Path Sensitization Methods (contd)
Fault propagation: Three scenarios are possible, paths f-h-k-L, g-i-j-k-L and both
paths.

Path f-h-k-L requires A=1, j=0 and E=1.
Line justification: Only j needs to be justified. Backward logic simulation requires
i=1. However, g is D so its not possible -- backtrack.

A

B

C

E

SA0

f

g

h

i
j k L

1

1

1

1
0 DD

D
D

D

11

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

 Path Sensitization Methods (contd)
Path f-h-k-L and g-i-j-k-L: Blocked at k since D frontier (chain of D and D) disappears.

Path g-i-j-k-L: Test found.

A

B

C

E

SA0

f

g

h

i
j k L

1

1
D

1
D

1

D
D

D

A

B

C

E

SA0

f

g

h

i
j k L

0

1
D

1
D

D

0
D

D

1

D

12

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

 Boolean Satisfiability and Implication Graph Methods:
xi and xi are literals, ak and bk are any two literals:

Objective is to find a set of assignments for the xis that satisfy these sets of Boolean

clauses.

2-SAT problem (each clause has two literals) is solvable in polynomial time.
3-SAT problem takes exponential time.

It is possible to formulate a Boolean product-of-sums expression, that if satisfied, indi-
cates a test for the fault.

These algorithms are now the fastest known for huge circuits.

αkβk∑ 0= (non-tautology -- always false)

αk βk+()∏ 1= (satisfiability)

13

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

 Boolean Satisfiability and Implication Graph Methods (contd)
The Boolean function for a logic gate is captured in equations, e.g.,

If a = 0 then z = 0
If b = 0 then z = 0
If z = 1 then a = 1 AND b = 1
If a = 1 AND b = 1 then z = 1
A cube is designed for each of these equations so that if the signals are consistently
labeled, the cube is 0.

Boolean false function:

Only 0 when a, b and z take values consistent with the AND function.

a
b z

az bz z ab() abz+ + + 0=
simplifies

az bz abz+ + 0=

FAND a b c, ,() z ab()⊕ az bz abz+ += =

14

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm Types

 Boolean Satisfiability and Implication Graph Methods (contd)
Complement of fAND is the truth expression or satisfiability.

An efficient way to find satisfying variable assignments for false or truth functions is
the implication graph.

Boolean variable x is represented by 2 literals x and x.
If x = 1, x assumes a true state, if x = 0, x is true.

if-then clauses can be represented with arcs from if literal to then literal:

Conversion to a transitive closure graph.
Here, if a node is set to true, e.g., a, all reachable nodes are also set to true.

This allows very efficient global analysis of signal implications.

a

b
z Implication graph

15

Design Verification & Testing CMPE 418ATPG

ATPG Algorithm

Ibarra and Sahni in 1975 showed that ATPG is NP-complete, therefore no polynomial
expression is known for the compute time.

These algorithms employ heuristics that:
 Find all necessary signal assignments for a test as early as possible.

 Search as little of the above decision space as possible (worst case is 2num_PIs *

4num_ffs).

Algorithm
Estimated speedup over
D-algorithm

Year

D-ALG 1 1966
PODEM 7 1981
FAN 23 1983
TOPS 292 1987
SOCRATES 1574 (ATPG system) 1988
Waicukauski et. al. 2189 (ATPG system) 1990
EST 8765 (ATPG system) 1991
TRAN 3005 (ATPG system) 1993
Recursive learning 485 1995
Tafertshofer et. al. 25057 1997

16

Design Verification & Testing CMPE 418ATPG

ATPG Algorithms

Since combinational fault simulation is O(n2), RPG and fault simulation is much more effi-
cient.

This is the driver for using RPG followed by ATPG for the hard-to-test faults.

Common definitions:
 Fault cone: The portion of a circuit whose signals are reachable by a forward trace of
the circuit topology starting at the fault site.

X
1

0

0

A

B

C 1
SA0 D D D

D
XX

E
F

1
X

D-frontier

G

17

Design Verification & Testing CMPE 418ATPG

ATPG Algorithms

 Forward implication: Results when the inputs to a logic gate are labeled so that the out-
put can be uniquely determined.

 Backward implication: It is the unique determination of all inputs of a gate for a given
output and possibly some of the inputs.

Backward implication is usually implemented procedurally since tables are cumber-
some for gates with more than 2 inputs.

a
b

z
D
0 0

a
b

z
D
1 D

a
b

D
0

a
b

D
1

zD

zD

AND gate implication table

a/b 0 1 X D D

0 0 0 0 0 0

1 0 1 X D D

X 0 X X X X

D 0 D X D 0

D 0 D X 0 D

18

Design Verification & Testing CMPE 418ATPG

ATPG Algorithms

 Backward implication (cont.):

 Implication Stack: Used to efficiently track that portion of the binary decision tree has
already been traversed.

a
b

z
1
1 0 a

b

D
0 zD

a
b

0
1 z0

Signal Value Alternative tried
A 1 NO
C 1 NO
E 1 NO
B 0 YES

Stack ptr

Here, the PIs were set in order
A, C, E and B.

Also, B was set to 1 but failed.

19

Design Verification & Testing CMPE 418ATPG

ATPG Algorithms

 D-frontier: The set of all gates with D or D at the inputs and X at the output.
Divides the circuit into a portion with faults effects and one without.

 Backtrack: ATPG algorithm backtracks if:
(a) The D-frontier becomes empty (fault effect cannot propagate further).
(b) A signal is inconsistently assigned both 0 and 1 in order to satisfy the testing condi-
tions.

Alternatives are tried using the implication stack, which causes the tree to be searched
in a depth-first fashion.

Signal Value Alternative tried
E 1 NO
B 0 YES
F 0 YESStack ptr

Here, 1 on F blocks fault
propagation, so 0 is tried.

Also, B was set to 1 but failed earlier.

20

Design Verification & Testing CMPE 418ATPG

ATPG Algorithms

 Objectives: Goals to be achieved during ATPG.
Intermediate signal assignments may make it impossible to achieve the objective.
Many of the improvements to ATPG algorithms have focused on improving the selec-
tion of the objectives, coupled with reduction in backtracks.

 Backtrace: An operation designed to determine which PI should be set to achieve an
objective.

Most frequently directed by combinational controllability and observability measures.

E (1,1)

A (1,1)

B

C

D

(1,1)

(1,1)
(1,1)

(3,3)
(5,2)

J = 1
(2,3)

(CC0, CC1)

Objective: J = 1
Setting D = 1 satisfies

this objective easiest.

J = 0
Objective: J = 0
Start with hardest: Top input of G1

and bottom input of G2 =>

G1

G2

A = 1 and B = 1.

21

Design Verification & Testing CMPE 418ATPG

ATPG Algorithms

 Branch-and-bound search: An efficient search procedure of binary decision trees.
Branch involves determining which input variable will be set to what value (0 or 1).
Bounding avoids searching large portions of the decision tree by restricting the search
decision choices.

The bounding operation is important since it avoids complete exploration.
However, decisions about bounding often need to be made with limited information.

Heuristics are used to bound the tree search.

