Power Dissipation

Static CMOS gates in older technologies were very power-efficient.

In newer technologies, power is a primary design constraint.

Power dissipation has skyrocketed due to transistor scaling, chip transistor counts and clock frequencies.

Instantaneous Power

The instantaneous power P(t) drawn from the power supply is proportional to the supply current $i_{DD}(t)$ and the supply voltage V_{DD} .

$$P(t) = i_{DD}(t)V_{DD}$$

Energy

The energy consumed over the time interval T is the integral of P(t)

$$E = \int_0^T i_{DD}(t) V_{DD} dt$$

Average Power

The average power over this interval is

$$P_{avg} = \frac{E}{T} = \frac{1}{T} \int_0^T i_{DD}(t) V_{DD} dt$$

CMOS Power Dissipation

Power dissipation in CMOS circuits comes from two components

- Static dissipation due to
 - subthreshold conduction through OFF transistors
 - tunneling current through gate oxide
 - leakage through reverse-biased diodes
 - contention current in ratioed circuits
- O Dynamic dissipation due to
 - charging and discharging of load capacitances
 - short circuit current while both PMOS and NMOS networks are partially ON

$$P_{total} = P_{static} + P_{dynamic}$$

We have discussed most of the static dissipation factors before.

Below 130nm static power is rapidly becoming a primary design issue Eventually, static power dissipation may become comparable to dynamic power Ratioed circuits (e.g. pseudo NMOS, discussed later) have more static dissipation.

Dynamic Power Dissipation

Primary source of dynamic dissipation is charging of the load capacitance.

Suppose load C is switched between V_{DD} and GND at average frequency f_{sw} .

Over time T, load is charged and discharged Tf_{sw} times.

In one complete charge/discharge cycle, a total charge of $\mathbf{Q=CV_{DD}}$ is transferred between V_{DD} and GND

The average dynamic power dissipation is

$$P_{dynamic} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt = \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$

Taking the integral of the current over interval T as the total charge delivered during time T

$$P_{dynamic} = \frac{V_{DD}}{T} [Tf_{sw}CV_{DD}] = CV_{DD}f_{sw}^{2}$$

As not all gates switch every clock cycle the above quantity is multiplied by α . α =1 for clock, for data maximum is α =0.5, empirically static CMOS has α =0.1

Also due to non-zero input rise and fall times (slew), both NMOS and PMOS will be ON. Causes short circuit current that depends on input slew and output capacitance.

