DC Response

DC Response: Vout vs. Vin for a gate

• Ex: Inverter

When
$$V_{in} = 0 \rightarrow V_{out} = V_{DD}$$

When
$$V_{in} = 1 \rightarrow V_{out} = 0$$

In between, V_{out} depends on transistor size and current.

By KCL, must settle such that $I_{dsn} = |I_{dsp}|$

Could solve analytically or using simulations but a graphical solution is easier.

From previous analysis, we know that current depends on the region of operation.

So we need to the region of operation for all values of V_{in} and V_{out} .

NMOS Operation

Cutoff	Linear	Saturation
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
$V_{in} < V_{tn}$	$V_{in} > V_{tn}$	$V_{in} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$
	$V_{out} < V_{in}$ - V_{tn}	$V_{out} > V_{in} - V_{tn}$

$$V_{gsn} = V_{in}$$

$$V_{dsn} = V_{out}$$

$$V_{tn} > 0$$

PMOS Operation

Cutoff	Linear	Saturation
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

$$V_{gsp} = V_{in} - V_{DD}$$

$$V_{dsp} = V_{out} - V_{DD}$$

$$V_{tp} < 0$$

Load Line Analysis

For a given V_{in} , Plot I_{dsn} , I_{dsp} vs. V_{out} . (V_{out} values where |currents| are equal)

$$V_{in} = 0$$

Load Line Analysis

$$V_{in} = 0.4 V_{DD}$$

$$V_{in} = 0.6 \ V_{DD}$$

Load Line Analysis

$$V_{in} = 0.8 \ V_{DD}$$

$$V_{in} = 0.8 \ V_{DD}$$

 $V_{in} = V_{DD}$

Load Line Summary

Operating Regions and Supply Current

Region	NMOS	PMOS
A	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
Е	Linear	Cutoff

Supply current I_{DD} vs. V_{in}.

Beta Ratios

- \bigcirc If $\beta_p \neq \beta_n$, switching point will move from $V_{DD}/2$.
- O Called *skewed* gate
- Other gates: Collapse into equivalent inverter
- Curves shift, but the output transition in the C region still remains sharp
- Therefore, beta ratios don't affect switching performance
- With equal beta values the time required to charge or discharge the output load capacitance is equal
- Results in equal rise and fall times

Noise Margins

- A parameter that determines the maximum *noise* voltage on the input of a gate that allows the output to remain stable.
- Two parameters, Low noise margin (NM_L) and High noise margin (NM_H).
 NM_L = difference in magnitude between the max LOW output voltage of the driving gate and max LOW input voltage recognized by the driven gate. NM_H is similar for high voltage input and output range.

Logic Levels

To maximize noise margins, select logic levels at unity gain points of DC transfer characteristics

Pseudo-nMOS Inverter

When driver is on, steady-state current flows - not a good choice for low-power circuits.

Therefore, the shape of the transfer characteristic and the V_{OL} of the inverter is affected by

the ratio
$$\frac{\beta_n}{\beta_p}$$

In general, the low noise margin is considerably worse than the high noise margin for Pseudo-nMOS.

Pseudo-nMOS was popular for high-speed circuits, static ROMs and PLAs.

Pseudo-nMOS

Example: Calculation of noise margins:

Pseudo-nMOS inverter

$$NM_H = V_{OH} - V_{IH} = 4.6V - 2.2V = 2.4V$$

 $NM_L = V_{IL} - V_{OL} = 1.2V - 0.60V = 0.60V$ (This is quite a bit worse than NM_H)

Transient Response

DC analysis tell us V_{out} if V_{in} is constant.

Transient analysis tells us $V_{out}(t)$ if $V_{in}(t)$ changes.

Requires solving differential equations

Input is usually considered to be a step or ramp from V_{DD} to 0 or vice versa.

Step response of inverter driving a capacitive load

Inverter Step Response

$$V_{in}(t) = u(t - t_0)V_{DD}$$

$$V_{out}(t < t_0) = V_{DD}$$

$$\frac{dV_{out}}{dt} = \frac{I_{dsn}(t)}{C_{load}}$$

$$I_{dsn}(t) = \begin{cases} \frac{\beta}{2} (V_{DD} - V)^2 \\ \beta (V_{DD} - V_t - V_{out}(t)/2) V_{out}(t) \end{cases}$$

$$t < t_{0}$$
 $V_{out} > V_{DD} - V_{t}$
 $V_{out} < V_{DD} - V_{t}$