VHDL

(VHDL Introduction A
VHSIC Hardware Description Language

A language for describing the structural, physical and behavioral characteristics
of digital systems.

Execution of a VHDL program results in a simulation of the digital system.

VHDL supports both structural and behavioral descriptions of a system at
multiple levels of abstraction.

Structure and behavior are complementary ways of describing systems.

* A description of the behavior of a system says nothing about the structure or
the components that make up the system.

* There are many ways in which you can build a system to provide the same
behavior.

Reference: "VHDL Starter’s Guide", Sudhakar Yalamanchili, Prentice Hall

G,
Gim e
ﬁﬂnr 1
= \l g
2 “]H.li. /5

———

VHDL

f\/H DL Introduction

VHDL programs are unlike programs written using conventional programming
languages.

Digital systems are fundamentally about signals, specifically binary signals that
may take values 0 or 1.

They are composed of components such as memories, registers, gates, caches,
ALU’s etc.

VHDL allows you to specify:
® The components of a circuit.

* Their interconnection.
* The behavior of the components in terms of their input and output signals.

For example :-

What are the behavioral properties of a half-adder circuit ?

VHDL

@vmts, Propagation Delay and Concurrency)
Every transition is an event

a y —
sum .

b :
r L

) carry T

Half Adder &

]
)
] []

5 10 15 20 25 30 35
eLvent on a from 1to 0. (i.e. a time stamped transition)
* The output changes after a 5ns propagation delay.
Both gates (and wires) have inertia or a natural resistance to change.
* A third property of this circuit is concurrency,.
Both the xor and and gate compute new output values concurrently when

an input changes state.
Data driven system: Events on signals lead to computations that may gener-

J

ate events on other signals.

FRILAND 3
MBC (’>
Wt 3
S W <
2 “]H.li. /5
Toes.

VHDL

(Discrete Event Simulation A
We can view VHDL as a programming language for describing the genera-

tion of events in digital systems supported by a discrete event simulator.

A discrete event simulator executes VHDL code, modeling the passage of time
and the occurrence of events at various points in time.

It maintains an event list data structure to keep track of the order of all future
events in the circuit.

simulator clock An event:
5ns 1->0 > 1->0 » ... Achangein the
a@bns sum@>sns value of a signal
Timestamp:
0>1 - 1->0 » .. lime at which an
b@10ns c_out@10ns event is to occur.

Advance simulation clock to time of next event, update signals receiving val-
ues.
Evaluate all components affected by signal updates and schedule new

events.

VHDL

(Basic L anguage Concepts)
Signals: Like variables in a programming language such as C, signals can be
assigned values, e.g., 0,1, Z, U.

However, signals also have an associated time value.
A signal receives a value at a specific point in time and retains that value
until it receives a new value at a future point in time.

The sequence of values assigned to a signal over time is the waveform of the
signal.

A variable always has one current value.

At any instant in time, a signal may be associated with several time-value
pairs.

Just as variables can be of type integer, real etc. signals can be defined hav-
ing specific types.
e.g. std_logic and std_logic_vector(X,, downto X)

J

VHDL

@ntity-Archit&ture
Design entity: A component of a system whose behavior is to be described

and simulated.

Two components to the description:
The interface to the design: entity declaration.
The internal behavior of the design: architecture construct.

Entity example for half adder:
entity half adder is port -- Note: VHDL is CaSe insensitive.
(a, b:in bit;
sum, carry: out bit);
end half adder;

half_adder is the name given to the design entity.

The input and outputs signals; a, b, sum and carry, are referred to as ports.

G,
Gim e
ﬁ~!.—ur 6
= \l g
2 “]H.li. /5

———

VHDL

@ntity-Archit&ture
Each port has a type, bit and bit_vector can assume values of 0 and 1.

Each port has a mode; in, out or inout (bidirectional signals).

Bit vectors are specified as:

A B . .
v v entity ALU32 is port(

Op \ A., B: in !ait_vector(31 downto Q) ;

N C: out bit_vector(31 downto 0);
7 Op: in bit_vector(5 downto 0);
N, Z: out bit);
C end half_adder;

A and B are 32 bits long with the most significant bit as 31.

A more general definition of bit and bit_vector are std_logic and
std_logic_vector, which can assume more than just 0 and 1.

VHDL

@ntity-Archit&ture)
Architecture construct:

architecture arch_name of entity_name is
-- place declarations here
begin
-- place description of behavior here
end half adder _arch;

Concurrent statements:
Signal assignment statements specify the new value and the time at
which the signal is to acquire this value.

The textual order of the concurrent signal assignment statements (CSAs)
do NOT effect the results.

architecture half adder arch of half adder is
begin
sum <= (a xor b) after 5 ns;

carry <= (a and b) after 5 ns;
end half adder_arch;

G,
Gim e
ﬁ~!.—ur 8
= \l g
2 “]H.li. /5

VHDL

@ntity-Archit&ture
We can also use (local) signals internal to the architecture, e.g., s1, s2 and s3 in

entity full_adder is port(
a, b, c_in: in bit;
sum, carry: out bit);
end half adder;

the full adder circuit.
a s]
b X1 X2 sum
AD s2
Al\ <3 o1 c_out
J
c_in Full Adder

~\

VHDL

@ntity-Archit&ture
architecture full_adder_arch of full_adder is
signal s1, s2, s3: bit;
constant gate_delay: Time:= 5 ns;
begin
L1: sl <= (a xor b) after gate_delay;
L2:s2 <= (c_in and s1) after gate_delay;
L3: s3 <= (a and b) after gate_delay;
L4: sum <= (sl xor c_in) after gate_delay;

L5: carry <= (s2 or s3) after gate_delay;
end full adder_arch;

VHDL

(Entity-Architecture
The following statements are also legal:

sl <= (a xor b) after 5 ns, (a or b) after 10 ns, (not a) after 15 ns;

wave <="0",’1” after 10 ns, ‘0" after 15 ns, ‘1’ after 25 ns;

A driver list that specifies a waveform.

This statement generates a set of transactions (time-value pairs) to be carried
out at distinct times in the future.

wave

SCAND
ST
/" UM B C N\
N
5 A
2) |
2 W <
556

VHDL

(Other VHDL constructs
Conditional Signal Assignment Statement:

entity mux4 is port(
in0, in1, in2, in3: in bit;
S0, S1: in bit;
Z: out bit_vector(7 downto 0);
end mux4;
architecture behavioral of mux4 is
begin
Z <=1n0 after 5 ns when SO =’0" and S1 = "0’ else
in1 after 5 ns when SO =’0" and S1 =1’ else
in2 after 5 ns when SO = '1" and S1 =0’ else
in3 after 5 ns when SO =’1" and S1 =1’ else

"00000000" after 5 ns;
end behavioral;

The first conditional found to be true determines the value transferred to the

output.
The Selected Signal Assignment Statement behaves similarly.

with addr] select
reg_out <= reg(after 5 ns when "000", ...

SCAND
SIS

/" UM B C N\

A W
5 A
i AN o)

2 W <

2 5

2 8 /5

555

VHDL

M odeling Behavior, Processes)

Processes are used:
* For describing component behavior when they cannot be simply modeled

as delay elements.
* To model systems at high levels of abstraction.

Process incorporate conventional programming language constructs.

A process is a sequentially executed block of code, which contains.

* arrays and queues.
* Variable assignments, e.g., x := y, which, unlike signals, take effect immedi-

ately.
* if-then-else and loop statements to control flow.
e Signal assignments to external signals.

Processes contain sensitivity lists in which signals are listed, which determine

when the process executes.
In reality, CSAs are also processes without the process, begin and end key-

words.

13

VHDL

M odeling Behavior, Processes

entity half adder is port(
a, b: in bit;
sum, carry: out bit;
end mux4;
architecture behavior of half_adder is
begin
sum_proc: process (a, b) begin
if (a=Db) then
sum <= "0" after 5 ns;
else
sum <= (a or b) after 5 ns;
end if;
end process;
carry_proc: process (a, b) begin
case a is
when 0" => carry <= a after 5 ns;
when 1’ => carry <= b after 5 ns;
when others => carry <= "X" after 5 ns;
end case;

end process;
end behavior;

-
A \l
A\

.
U
U
y

y UMBC 14

AN

———

VHDL

M odeling Behavior, L ooping)
Looping constructs include the for and while statements, e.g.,

for index in 1 to 32 loop
if product_register(0) = "1’ then
product_register(63 downto32) := produce_register(63 downto 32) +
multiplicand_register(31 downto 0);
end if;
product_register(63 downto 0) := "0’ product_register(63 downto 1);
end loop;

The loop index is implicitly declared, local to the loop and cannot be changed.

Alternatively;
while (j < 32) loop

j=]+1
end loop;

SCAND
ST

/" UM B C N\
A W
5 A
i AN o)
2 W <

556

VHDL

M odeli ng Behavior, The Wait Statement
Processes are executed once upon initialization.

Thereafter, they are executed in a data-driven manner by either:
* an event on one or more signals in the sensitivity list.

» waiting for the occurrence of specific event using a wait statement.

The wait statement specifies the conditions under which a process may
resume execution after being suspended, e.g.,

wait for time expression; -- wait for a specified time interval.
wait on signal; -- wait on a signal(s).
wait until condition; -- wait until condition becomes true;

The first and third form allow processes to model components that are not
necessarily data driven.

wait statements also allow processes to suspend at multiple points, and not
just at the beginning.

16

VHDL

M odeli ng Behavior, The Wait Statement
For example, a positive edge-triggered flip-flop:

entity dff is port(

D, Clk: in bit;

Q, Qbar: out bit;
end dff;
architecture dff_arch of dff is

begin

output: process begin
wait until (Clk’event and Clk ="1");

Q <= D after 5 ns;
Qbar <= not D after 5 ns;

end process output;
end dff arch;

Note attribute Clk’event which is true when an event (rising or falling edge)
occurs on signal Clk.

A D flip-flop with asynchronous reset (R) and set (S) inputs given in refer-

ence.

17

VHDL

M odeling State M achines)
A state machine (Mealy machine):

> >

Inputs Outputs

» | Combinational >
Logic 0/1

—
(50 oFs
1/0
State < 1/0
Clock

Combinational part implemented in one process, sensitive to events on the
input signals or state variables.

Sequential part implemented in a second process, sensitive to the rising edge
of the clock.

. J

v “”’
iy) 18
R "IH W5

———

VHDL

M odeli ng State M achines
entity state_machine is port(
reset, clk, x: in bit;
z: out bit;
end state_machine;
architecture behavioral of state_machine is
type statetype is (state0, statel);
signal state, next_state: statetype := state0;
begin
comb_process: process (state, x) begin
case state is
when state0 => if x =’0" then next_state <= statel; z <="1;
else next_state <= state(; z <= '0’; end if;
when statel => if x = "1’ then next_state <= state(Q; z<="0’;

else next_state <= statel; z <="1’; end if;
end case; end process comb_process;

clk_process: process begin
wait until (clk’event and clk ="1")
if reset = "1’ then state <= statetype’left;
else state <= next_state; end if;

end process clk_process;
end behavioral;

19

VHDL

fModeIing Structure)
Structural model: A description of a system in terms of the interconnection of
its components, rather than a description of what each component does.

A structural model does NOT describe how output events are computed in
response to input events.

How do we simulate the circuit ?

Behavioral models of each component are assumed to be provided.

A VHDL structural description must possess:
* The ability to define the list of components.
* The definition of a set of signals to be used to interconnect them.

* The ability to uniquely label (distinguish between) multiple copies of the
same component.

SLAND
SO
4 B o
R
2 » A
= W <
Toes

VHDL

fModeIing Structure)
A structural description of a full adder:

entity full _adder is port(
inl, in2, c_in: in bit;
sum, c_out: out bit;
end full adder;

architecture structural of full_adder is
component half_adder
port (a, b: in bit; sum, carry: out bit);
end component; Component
component or_2 declarations
port (a, b: in bit; c: out bit);
end component;

Signal

ignal s1, s2, s3: bit;
signal s1, s2, s3: bit; declarations

begin
H1: half adder port map(a =>inl, b =>in2, sum =>s1, carry =>s3);
H2: half adder port map(a=>sl, b =>c_in, sum => sum, carry =>s2);
O1: or_2 port map(a =>s2,b =>s3,c=>c_out);
end structural;

SJLAND 3,
SR
/" UM B C N\
N
7 A
i » o]
2 Wl <
2 5
< 4
556

AN Component

Interconnection

J

VHDL

M odeling Structure
A state machine of a bit-serial adder:

a
>
z
b » | Combinational >
Logic 11/0
e Carry
01/1 00/1 }g;g
0o Clk 10/1

22

VHDL

M odeling Structure
A structural description of a bit-serial adder:

entity serial_adder is port(
a, b, clk, reset: in bit;
z: out bit;

end serial_adder;

architecture structural of serial_adder is
component comb
port (a, b, c_in: in bit; z, carry: out bit);
end component;
component dff
port (clk, reset, d: in bit; g, gbar: out bit);
end component;

signal s1, s2: bit;

begin
C1: comb port map(a=>a,b=>b, c_in=>sl,z=>z carry =>5s2);
D1: dff port map(clk => clk, reset => reset, d =>s2, q =>sl,
gbar => open);
end structural;

SJLAND 3,
SR
/" UM B C N\
N
7 A
i » o]
2 Wl <
2 5
< 4
556

