
1

Systems Design & Programming CMPE 310Data Movement Instructions

Intel Assembly

Data Movement Instruction:
 mov (covered already)
 push, pop
 lea (mov and offset)
 lds, les, lfs, lgs, lss
 movs, lods, stos
 ins, outs
 xchg, xlat
 lahf, sahf (not covered)
 in, out
 movsx, movzx
 bswap
 cmov

2

Systems Design & Programming CMPE 310Data Movement Instructions

Stack Instructions

There are six forms of the push and pop instructions.
Register, memory (memory-to-memory copy), immediate, segment register, flags, and
all registers

push:
The source of the data may be:

Any 16- or 32-bit register, immediate data, any segment register, any word or dou-

bleword of memory data

pushad pushes eax, ecx, edx, ebx, esp, ebp, edi and esi where the value of esp saved
on the stack is its value before the pushad.

pop:
The source of the data may be:

Any 16- or 32-bit register, any segment register (except for cs), any word or dou-

bleword of memory data.

3

Systems Design & Programming CMPE 310Data Movement Instructions

Stack Instructions
push:

Stack Seg
push eax

0 7 F E

AH AL

esp = esp-4
is performed before the PUSH

000007FA is the new value
0 0 1 0

+
Seg
Base

Paging

Trans.

eax

ebx

ecx

edx

esp

ebp

edi

esi

cs

ds
es
ss

FFFF6AB3

6 A B 3F F F F

0 0 0 0

4

Systems Design & Programming CMPE 310Data Movement Instructions

Address Loading Instructions

Load-Effective Address.

 lea:
Loads any 32-bit register with the address of the data, as determined by the instruction
addressing mode.

 lds and les:
Load a 32-bit offset address and then ds or es from a 48-bit memory location.

 lfs, lgs and lss (80386 and up):
Load any 32-bit offset address and then fs, gs or ss from a 48-bit memory location.

NOTE: lea calculates the ADDRESS given by the right arg and stores it in the left arg!

lds edi, LIST ;Loads edi and ds.

lea eax,[ebx+ecx*4+100] ;Loads eax with computed address.

lfs esi, DATA1 ;Loads esi and fs.

5

Systems Design & Programming CMPE 310Data Movement Instructions

Address Loading Instructions

Load-Effective Address.

lea versus mov:

1 and 3 are equivalent.

So what are the differences?
3 is faster than 1 and is preferred.
However, mov only works with single args and cannot be used with LIST[edi].
lea can take any address, e.g., lea esi, [ebx + edi].

mov ebx, edi ;Move the contents of edi into ebx.

lea ebx, [edi] ;Load the contents of edi into ebx.
mov ebx, [edi] ;Load the value at edi into ebx.

(1)
(2)
(3)

6

Systems Design & Programming CMPE 310Data Movement Instructions

String Operations

movs, lods, stos, ins, outs
Allow data transfers of a byte, a word or a double word, or if repeated, a block of each
of these.

The D flag-bit (direction), esi and edi are implicitly used.
 D = 0: Auto increment edi and esi.

Use cld instruction to clear this flag.
 D = 1: Auto decrement edi and esi.

Use std instruction to set it.

edi:
Accesses data in the extra segment. Can NOT override.

esi:
Accesses data in the data segment. Can be overridden with segment override pre-

fix.

7

Systems Design & Programming CMPE 310Data Movement Instructions

String Operations

lods:
Loads al, ax or eax with data stored at the data segment (or extra segment) + offset
given by esi.

esi is incremented or decremented afterwards:

stosb:
Stores al, ax or eax to the extra segment (es) + offset given by edi. es cannot be over-

ridden.
edi is incremented or decremented afterwards:

lodsb ;al=ds:[esi]; esi=esi+/-1

lodsd ;eax=ds:[esi]; esi=esi+/-4

es lodsb DATA1 ;Override ds.

stosb ;es:[edi]=al; edi=edi+/-1
stosd ;es:[edi]=eax; edi=edi+/-4

8

Systems Design & Programming CMPE 310Data Movement Instructions

String Operations

rep prefix:
Executes the instruction ecx times.

NOTE: rep does not make sense with the lodsb instruction.

movs:
Moves a byte, word or doubleword from data segment and offset esi to extra segment
and offset edi.

Increments/decrements both edi and esi:

mov edi, 0 ;Offset 0.
mov ecx, 25*80 ;Load count.
mov eax, 0720H ;Load value to write.

rep stosw

movsb ;es:[edi]=ds:[esi]; edi+/-=1; esi+/-=1
movsd ;es:[edi]=ds:[esi]; edi+/-=4; esi+/-=4

9

Systems Design & Programming CMPE 310Data Movement Instructions

String Operations and Exchange

ins/outs:
Transfers a byte, word or doubleword of data from/to an I/O device into/out of the
extra/data segment + offset edi/esi, respectively.

The I/O address is stored in the edx register.

xchg:
Exchanges the contents of a register with the contents of any other register or
memory location.

It can NOT exchange segment registers or memory-to-memory data.
Byte, word and doublewords can be exchanged using any addressing mode (except
immediate, of course).

insw ;es:[edi]=[edx]; edi+/-=2; esi+/-=2

insb ;es:[edi]=[edx]; edi+/-=1
insd ;es:[edi]=[edx]; edi+/-=4

outsb ;[edx]=ds:[esi]; esi=esi+/-1

xchg edx, esi ;Exchange edx and esi

10

Systems Design & Programming CMPE 310Data Movement Instructions

Miscellaneous Data Transfer Operations

movsx and movzx (80386 and up only):
Move-and-sign-extend and Move-and-zero-extend:

bswap (80486 and up only):
Swaps the first byte with the forth, and the second byte with the third.

Used to convert between little endian and big endian:

cmov (Pentium and up only):
These instructions move data only if a condition is true.

Conditions are set by a previous instruction and include Carry, Zero, Sign, Over-

flow and Parity:

There are many variations of this instruction (see intel instructions doc or text).

movsx cx, bl ;Sign-extends bl into cx
movzx eax, DATA2 ;Zero extends word at DATA2 in eax.

bswap eaxeax 2 2 3 30 0 1 1 1 1 0 03 3 2 2

cmovz eax, ebx ;Move if Zero flag is set else do nothing.

11

Systems Design & Programming CMPE 310Data Movement Instructions

Assembler Directives

Segment Override Prefix:
Allows the programmer to override the default segment.

Procedure Calls

es outsb
es cmpsb

call procedure_name ;Call the procedure

push args... ;Push the arguments on stack.

add esp, # ;Restore the stack pointer.

