
1

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Intel Assembly

Arithmetic Operations:
 Addition
 Subtraction
 Multiplication
 Division
 Comparison
 Negation
 Increment
 Decrement

Logic Operations:
 AND
 OR
 XOR
 NOT
 shift
 rotate
 compare (test)

2

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Arithmetic Operations

Addition, Increment, Add-with-carry and Exchange-and-add:
Contents of the rightmost 8 bits of the FLAGS register can change (+ Overflow) for
arithmetic and logic instructions.

Flags include:
 Z (result zero)
 C (carry out)
 A (half carry out)
 S (result positive)
 P (result has even parity)
 O (overflow occurred)

add al, [ARRAY + esi]
;Adds 1 to any reg/mem except seginc byte [edi]
;Adds registers + Carry flag.adc ecx, ebx

;ecx=ecx+ebx, ebx=original ecx.xadd ecx, ebx
;Used for adding 64 bit nums.

3

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Arithmetic Operations

Subtraction, Decrement and Subtract-with-borrow:

Comparison:

Changes only the flag bits.
Often followed with a conditional branch:

sub eax, ebx
dec edi

;Subs registers - Carry flag.sbb ecx, ebx

;eax=eax-ebx

cmp al, 10H
jae LABEL1

;Jump if equal or below.jbe LABEL2
;if ecx==eax, eax=edx else eax=ecxcmpxchg ecx, edx

;Jump if equal or above.

4

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Arithmetic Operations
Multiplication and Division:

imul/idiv: Signed integer multiplication/division.
mul/div: Unsigned.

al always holds the multiplicand (or ax or eax).
Result is placed in ax (or dx and ax or edx or eax).

C and O bits are cleared if most significant 8 bits of the 16-bit product are zero
(result of an 8-bit multiplication is an 8-bit result).

Division by zero and overflow generate errors.
Overflow occurs when a small number divides a large dividend.

mul bl
imul bx

;Special, cx=dx*12H (signed only)imul cx, dx, 12H
;edx|eax=eax*ecxmul ecx

;ax=al*bl (unsigned)
;dx|ax=ax*bx (signed)

div cl

;dx|ax=(dx|ax)/cxidiv cx

;ah|al=ax/cl, unsigned quotient
; in al, remainder in ah

5

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Logic Operations

Allow bits to be set, cleared and complemented.
Commonly used to control I/O devices.

Logic operations always clear the carry and overflow flags.

 AND: 0 AND anything is 0.
Commonly used with a MASK to clear bits:

 OR: 1 OR anything is 1.
Commonly used with a MASK to set bits:

XXXX XXXX Operand
0000 1111 Mask

0000 XXXX Result
and al, bl ;al=al AND bl

XXXX XXXX Operand
0000 1111 Mask

XXXX 1111 Result
or eax, 10 ;eax=eax OR 0000000AH

6

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Logic Operations
 XOR: Truth table: 0110.

Commonly used with a MASK to complement bits:

 TEST: Operates like the AND but doesn't effect the destination.
Sets the Z flag to the complement of the bit being tested:

 BT: Test the bit, BTC: Tests and complements...

 NOT (logical one's complement)
 NEG (arithmetic two's complement - sign of number inverted)

XXXX XXXX Operand
0000 1111 Mask

XXXX XXXX Result
xor ah, ch ;ah=ah XOR ch

test al, 4
jz LABEL ;Jump to LABEL if bit 2 is zero.

;Tests bit 2 in al -- 00000100

not ebx
neg TEMP

7

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Logic Operations
Shift: Logical shifts insert 0, arithmetic right shifts insert sign bit.

Double precision shifts (80386 and up):

Rotate: Rotates bits from one end to the other or through the carry flag.

Commonly used to operate on numbers wider than 32-bits:

shl eax, 1
sar esi, cl

;eax is logically shifted left 1 bit pos.
;esi is arithmetically shifted right

shdr eax, ebx, 12 ;eax shifted right by 12 and filled
;from the left with the right

shdl ax, bx, 14
;12 bits of ebx.

rol si, 14
rcr bl, cl

;si rotated left by 14 places.
;bl rotated right cl places through carry.

shl ax, 1 ;Original 48-bit number in dx, bx and ax.
;Shift ax left 1 binary place.

rcl bx, 1 ;Rotate carry bit from previous shl into
;low order bit of bx.

rcl dx, 1 ;Rotate carry bit from previous rcl in dx.

8

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Bit/String Scan

Bit Scan Instruction (80386 and up):
Scan through an operand searching for a 1 bit.
Zero flag is set if a 1 bit is found, position of bit is saved in destination register.

String Scan Instructions:
scasb/w/d compares the al/ax/eax register with a byte block of memory and sets the
flags.

Often used with repe and repne
cmpsb/w/d compares 2 sections of memory data.

bsl ebx, eax
bsr bl, cl

;eax scanned from the left.
;cl scanned from the right.

9

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Program Control Instructions
Conditional and Unconditional Jumps, Calls, Returns, Interrupts
Unconditional Jumps

 Short jump: PC-relative using two bytes (+127/-128 bytes).
(PC-relative: constant added to eip).

 Near jump:
Within segment (max of +/- 2G).

 Far jump:
Four bytes give the offset and two bytes give a new segment address.
The segment value refers to a descriptor in protected mode.

jmp short NEXT
NEXT: add ax, bx

;short keyword is optional.

jmp near eax ;Jump to address given by eax.

jmp [eax] ;Jump to address given by [ax].

jmp far LABEL ;Jump to address given by LABEL.

10

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Flow-of-Control Instructions

Conditional Jumps:
Test flag bits S, Z, C, P and O.

For unsigned numbers:

For signed numbers

For either signed or unsigned:

Test cx instead of flags:

ja ;Jump if above (Z=0 and C=0)
;Jump if below or equal (Z=1 or C=1)jbe

;Jump if >= (S=O)jge
;Jump if < (S<>O)jl

;Jump if != (Z=0)jne
;Jump if ==; or jump if zero (Z=1)je or jz
;Jump if carry set (C=1)jc

;Jump if cx==0jcxz
;Jump if ecx==0jecxz

11

Systems Design & Programming CMPE 310Arithmetic, Logic and Control Instructions

Flow-of-Control Instructions

Conditional Set instructions:

Set a byte to either 01H or 00H, depending on the outcome of condition under test.

LOOP Instruction:
Combination of decrement ecx and jnz conditional jump.

Decrement ecx
If ecx != 0, jump to label
else fall through.

Example

;Set al=1 if >than (test Z==0 AND S==0) setg al
;else set al to 0

;Jump if ecx != 0loop LABEL
;Jump if (Z = 1 AND ecx != 0)loope
;Jump if (Z = 0 AND ecx != 0)loopne

