Systems Design & Programming CMPE 310

NASM Compilation

O To get command line help, type:
nasm -h

O To compile into an ELF object file .o, type:
nasm -f elf myfile.asm

O To create a listing file, type:
nasm -f elf myfile.asm -l myfile.lst

O To send errors to a file, type:
nasm -E myfile.err -f elf myfile.asm

O To include other search paths such as /usr/include, type:
nasm -I/usr/include -f elf myfile.asm

O To include other files in a source file, use:
Yoinclude ""'myinc.inc'"'

O To define constants, use either of the equivalent forms:
-dFOO0=100 on the compile command line.
Yodefine FOO 100 in the source file.

NASM is case-sensitive.

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Syntax
O In order to refer to the contents of a memory location, use square brackets.

O In order to refer to the address of a variable, leave them out, e.g.,
moy eax, bar ;Refers to the address of bar

mov eax, [bar] ;Refers to the contents of bar

No need for the OFFSET directive.

O NASM does not support the hybrid syntaxes such as:
mov eax,table[ebx] ;ERROR

mov eax, [table+ebx] ;0O.K.
mov eax, [es:edi] ;O.K.

O NASM does NOT remember variable types:
data dw O ;Data type defined as double word.

mov [datal], 2 :Doesn’t work.
mov word [datal, 2 ;0K

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Syntax

O NASM does NOT remember variable types
Therefore, un-typed operations are not supported, €.g.
LODS, MOVS, STOS, SCAS, CMPS, INS, and OUTS.

You must use instead:
LODSB, MOVSW, and SCASD, etc.

O NASM does not support ASSUME.
It will not keep track of what values you choose to put in your segment registers.

O NASM does not support memory models.
The programmer is responsible for coding CALL FAR instructions where necessary
when calling external functions.

call (seg procedure) :proc ;call segment:offset

seg returns the segment base of procedure proc.

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Syntax

O NASM does not support memory models.
The programmer has to keep track of which functions are supposed to be called with a

far call and which with a near call, and is responsible for putting the correct form of
RET instruction (RETN or RETF).

O NASM uses the names sz0, stl, etc. to refer to floating point registers.

O NASM's declaration syntax for un-initialized storage is different.

stack DB 64 DUP (?) ;ERROR
stack resb 64 ;Reserve 64 bytes.

O Macros and directives work differently than they do in MASM.

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Syntax
NASM source line:
label: instruction operands ; comment

The "' is optional, which can cause problems if, for example, you misspell an instruction,
e.g. lodab instead of lodsb.

Use -w+orphan-labels as a command line option to the compiler to identify these!

Valid characters in labels are letters, numbers, , $, #, @, ~, ., and ?.
Identifier valid starting characters include letters, ., _ and ?.

Instruction prefixes supported:
B LOCK

B REP,
B REPE/REPZ
B REPNE/REPNZ

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Syntax

Floating point instructions can take on two-operand forms or a single operand form:

fadd stl ;This sets st0 = st0 + stl
fadd st0,stl ;So does this.
fadd stl,st0 ;this sets stl := stl + stO

Almost any float-point instruction that references memory must use one of the pre-

fixes DWORD, OWORD or TWORD to indicate what size of memory operand it
refers to.

Storage directives:
DB, DW, DD, DQ and DT are used for initialized data only.
RESB, RESW, RESD, RESQ and REST are used for uninitialized.

db 0x55 ; The byte 0x55

dw '"abc’ ;0x41 0x42 0x43 0x00 (string)

dd 0x12345678 ;0x78 0x56 0x34 0x12
zerobuf: times 64 db 0 ;Equivalent to the dup op

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Syntax

EQU defines a symbol to a constant:

message db 'hello, world!'
msglen equ $-message

Address mode examples:

mov eax, [ebx*2+ecx+offset]
moyv eax, [ebp+edi+8]

Constants:
Suffixes H, O and B are used hex, octal and binary. Ox also works for hex.

moyv eax, 0xa?2 ; hex

mov eax, 777q ;octal

mov eax, 10010011b ;binary

mov eax, 'abcd' ;ASCII chars 0x64636261
dd 1.2

dg1l.e+10

dt 3.141592653589793238462

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Syntax

The SEG operator returns the preferred segment base of a symbol:

moyv ax, Seg symbol ;Load the segment base.

moyv es, ax
moyv ebx, symbol

Will load ES:EBX with a valid pointer to symbol.
(Probably won't need unless you are writing 16-bit code which has multiple segments).

To declare a far pointer to a data item in a data segment:

dw symbol, seg symbol

Local Labels begin with a . and are associated with previous non-local label.

labell ; some code
.loop ; some more code
.Jne .loop ; jumps to previous .loop
ret ; Treated as labell.loop
label?2
. loop . .
.Jjne .loop ; Jumps to previous .loop

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Syntax

Single-line Macros:

Yodefine ctrl O0x1F & ;Definitions
Yodefine param(a,b) ((a)+(a)* (b))

Can be used as:

mov byte [param(2,ebx)], ctrl ‘D’

Which expands to:
mov byte [(2)+(2)*(ebx)], O0x1F & ‘D’

Note that expansion occurs at invocation time, not at definition time, e.g.

Yodefine a (x) 1+b(x) ;b(x) used before it is
Jodefine b (x) 2*x ;defined here.
Used as:

mov ax, al(8)

Expands to:

mov ax, 1+2*8

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Syntax

Overloading macros is allowed.

Yodefine foo (x) 1+x
Yodefine foo (x,y) l+x*y

Undefining macros:
Youndef foo

Multi-line Macros:

Jomacro prologue 1

push ebp

moyv ebp, esp

sub esp, %1
Y%eendmacro

And use as:
myfunc: prologue 12
Expands to:

myfunc: push ebp
moyv ebp, esp
sub esp, 12

;Single arg definition
;Double arg definition

UMBC

AN HONORS UNIVERSITY IN MARYLAND

10

Systems Design & Programming CMPE 310
NASM Syntax

Conditional assembly:
Given the macro (21h is a DOS interrupt):

Jomacro writefile 2+ ; Greedy macro params
Jjmp $%$endstr ;%% defines macro-local
¥%str: db %2 ; labels which are different
$%endstr: mov dx, %%str ;each time the macro is
moyv cx, %$%endstr-%$%str ;invoked.
moyv bx, %1
moyv ah, 0x40
int 0x21
Y% %endmacro
And the call:

YDoifdef DEBUG

writefile 2, “I'm here”, 13, 10
Yoendif

Using the command-line option -dDEBUG, expands the macro otherwise it is left out
(similar to C).

Note that “I'm here”, 13, 10 1s substituted in for %?2 in the above code.

UMBC 1

AN HONORS UNIVERSITY IN MARYLAND

Systems Design & Programming CMPE 310

NASM Syntax

Structure definitions:

struc mytype ;Defines mytype as 0
mt_long: resd 1 ;Defines mt_long as 0
mt_word: resw 1 ;Defines mt_word as 4
mt_byte: reshb 1 ;Defines mt_byte as 6
mt_str: resb 32 ;Defines mt_str as 7
endstruc

mytype_size is also defined as the total size, and is 39 in this example.
To declare instances:
mystruc: isfruc mytype

at mt_long, dd 123456 ; Same order as given 1in
at mt_word, dw 1024 ;the definition.
at mt_byte, db ‘x’
at mt_str, db ‘hello, world’, 13, 10, O
iend

To reference, you must use:

moyv eax, [mystruc+mt_word]

The align (and alignb) directive can be used to align the data.

UMBC 12

AN HONORS UNIVERSITY IN MARYLAND

Systems Design & Programming CMPE 310

NASM Examples

Hello World (using ld):

section .data
msg db 'Hello, world!’, 0xO0A

len equ $- msg ;length of hello string.
section .text

global _start ;must be declared for linker (1d)
_start: ;we tell linker where i1s entry point

mov eax, 4 ;system call number (sys_write)

mov ebx, 1 ;file descriptor (stdout)

moyv ecx, msg ;message to write

mov edx, len ;message length

int 0x80 ;call kernel

moyv eax, 1 ;system call number (sys_exit)

int 0x80

To produce hello.o object file:
nasm -f elf hello.asm

To produce hello ELF executable:
ld -s -0 hello hello.o

UMBC 13

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

NASM Examples

Hello World (using gcc):

section .data
msg db 'Hello, world!’, 0xO0A

len equ $- msg ;length of hello string.
section .text

main: ;main
moyv eax, 4 ;system call number (sys_write)
mov ebx, 1 ;file descriptor (stdout)
moyv ecx, msg ;message to write
mov edx, len ;message length
int 0x80 ;call kernel
mov eax, 1 ;system call number (sys_exit)
int 0x80

To produce hello.o object file:
nasm -f elf hello.asm

To produce hello ELF executable:
gcc -0 hello hello.o

UMBC 1

llllllllllllllllllllllllllll

