Systems Design & Programming CMPE 310

ASCII
Review conversion from one base to another in text as well as two's complement.
Table 1: ASCII (American Standard Code for Information Interchange)
Dec| Hex| Sym | Dec| Hex| Sym | Dec| Hex| Sym || Dec| Hex| Sym

0 0] NUL 32| 20 64 40| @ 96, 60| -
1 1| SOH 33| 21} ! 65| 41| A 97 61| a
2 2| STX 34, 22| " 66| 42| B 98| 62| b
3 3| ETX 35| 23| # 67 43| C 99, 63| c
4 4/ EOT 36| 24| $ 68 44| D 100 64, d
5 5| ENQ 37 25| % 69, 45| E 101} 65| e
6 6| ACK 38| 26| & 70, 46| F 102 66| f
7 7! BEL 39 27 ' 711 47, G 103| 67| ¢
8 8 BS 40| 28| (72| 48| H 104/ 68/ h
9 9 TAB 41 29|) 73] 49| 1 105 69| 1

10 A| LF 42| 2A| * 74 4A|] 106| 6A| j

11 B| VT 431 2B| + 75| 4B| K 107 6B| k

12| C| FF 44| 2C| , 76/ 4C| L 108 6C| 1

13] D] CR 45| 2D| - 77 4D| M 109] 6D| m

14, E| SO 46| 2E| . 78 4E| N 110] 6E| n

15 F| SI 47 2F |/ 79 4F O 111| 6F| o

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

ASCII
Table 2: ASCII (American Standard Code for Information Interchange)
Dec| Hex| Sym | Dec| Hex| Sym | Dec| Hex| Sym || Dec| Hex| Sym

16/ 10, DLE 48/ 30] O 80| 50 P 112, 70| p
17/ 11} DCI 49| 31| 1 81| 51| Q 113} 71} q
18] 12| DC2 50 32| 2 82| 52| R 114 72| r
19| 13| DC3 51 33] 3 83| 53] S 115 73| s
20| 14, DC4 52| 34| 4 84| 54| T 116 74| t
21| 15| NAK | 53] 35| 5 85| 55| U 117 75| u
22| 16/ SYN 54| 36| 6 86/ 56, V 118 76| v
23| 17| ETB 55| 37 7 &7\ 57| W || 119 77 w
24| 18| CAN 56| 38| 8 88| 58| X | 120f 78] x
25| 19| EM 571 39| 9 89 59| Y 121} 79| y
26| 1A| SUB 58| 3A| : 90| 5A| Z 122 7A| z
27| 1B| ESC 59| 3B| ; 91| 5B| [123] 7B| {
28| 1C| FS 60| 3CH < 92| 5C| \ 124] 7C| |
29| 1D/ GS 61| 3D = 93 5D|] 125 7D| }
30/ 1E| RS 62| 3E > 94 SE| A 126 7E| ~
31| 1F] US 63| 3F ? 95| S5F _ 127 7F

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310
Assembly Directives

ASCII: Stored using an assembler directive db:

floatstr db 'Float number -> %f ', 10, 0
mainl str: db ' Rectangular Areas’, 10, O
temp_ buf: times 200 db 0
temp_buf_size: equ $-temp_buf

Word-sized (dw) and doubleword-sized data (dd):
neg_exponent: dd -100

Little endian: Least significant byte is always stored in the lowest memory location.

303H Storage of the number 1234
302H 12H -«— High-order byte
301H 34H -«+— Low-order byte

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

Floating Point Formats

31 30 2322 0

S Exponent Significand

Single Percision

63 62 5251 0

S Exponent Significand (mantissa)

Double Precision

For single percision, the sign bit + 8-bit exponent + 24-bit mantissa = 33 bits !
The mantissa has a hidden 1 bit in the leftmost position that allows it to be stored as a
23-bit value.

The mantissa is first normalized to be >= 1 and < 2, e.g., 12 in binary i1s 1100, normal-
ized 1s 1.1 X 23.

The exponent is also biased by adding 127 (single) or 1023 (double), e.g. the 3 in the
previous example is stored as 127 + 3 = 130 (82H).

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

Floating Point Formats and Directives

Dec Bin Normal Sign Expon Mantissa
+12 1100 1.1 x 23 0 10000010 1000000 00000000 00000000

There are two exceptions:
The number 0.0 is stored as all zeros.

The number infinity is stored as all ones in the exponent and all zeros in the mantissa.
(The sign bit is used to indicate + or - infinity.)

Directive is dd for single, dq for double and df for 10 bytes:

dd 1.2
dqg 1.e+10
dt 3.141592653589793238462

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

Intel Assembly

Format of an assembly instruction:

LABEL OPCODE OPERANDS COMMENT
DATA1 db 00001000b ;Define DATA]l as decimal 8
START : mov eax, ebx ; Copy ebx to eax

LABEL:

Stores a symbolic name for the memory location that it represents.

OPCODE:
The instruction itself.

OPERANDS:

A register, an immediate or a memory address holding the values on which the opera-
tion is performed.

There can be from O to 3 operands.

llllllllllllllllllllllllllll

Assembly Basics / Addressing Modes

Data Addressing Modes

Data registers:

16-bit
registers

ah ax al

A
8-bit 16-bit
names

32-bit
extensions

eax
ebx
ecx
edx
esp
ebp
edi

esi

ah ax al
bh bx bl
ch ox
dh dx dl
Sp
bp
di
si

Accumulator
Base Index

Count

Data

Stack Pointer
Base Pointer
Destination Index

Source Index

Let's cover the data addressing modes using the movy instruction.
Data movement instructions move data (bytes, words and doublewords) between reg-

isters and between registers and memory.

Only the movs (strings) instruction can have both operands in memory.

Most data transfer instructions do not change the EFLLAGS register.

llllllllllllllllllllllllll

Systems Design & Programming CMPE 310

Data Addressing Modes
O Register
Source Dest
moyv eax, ebx ebx | ecax
Register Register
O Immediate
Source Dest
mov ch, 0x4b 4b > Cch
Data Register
O Direct (eax), Displacement (other regs)
Source Dest
seg_ base + DISP
mov [0x4321], eax eax 1 [0x4321]
Register Memory

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

Data Addressing Modes
O Register Indirect
Source Dest
seg _base + ebx
mov [ebx], cl cl 1 [ebx]
Register Memory

Any of eax, ebx, ecx, edx, ebp, edi or esi may be used.

O Base-plus-index

Source , Dest
, seg_basetebx+esi
mov [ebx+esi], ebp ebp » [ebx+esi]
Register Memory

Any combination of eax, ebx, ecx, edx, ebp, edi or esi.

O Register relative
Source Dest
seqg _base+ebx+4
mov cl, [ebx+4] [ebx+4] > cl
Memory Register

A second variation includes: mov eax, [ARR+ebx]

llllllllllllllllllllllllllll

Systems Design & Programming CMPE 310

Data Addressing Modes

O Base relative-plus-index

mov [ARR+ebx+esi], edx

O Scaled-index

mov [ebx+2*esi], eax

Source

seg base+ARR+ebx+esi

edx

Dest

-

Register

Source

[...]

A second variation includes: mov eax, [ebx+edi+4]

eax

Memory

Dest

seg base+ebx+t2*esi
.

Register

[...]

A second variation includes: mov eax, ebx*2+ecx+offset
Scaling factors can be 2X, 4X or 8X.

Memory

UMBC

AN HONORS UNIVERSITY IN MARYLAND

10

Systems Design & Programming CMPE 310

Data Addressing Modes

Register addressing
Note: mov really COPIES data from the source to destination register.
B Never mix an 16-bit register with a 32-bit, etc.
For example

mov eax, bx ;ERROR: NOT permitted.

B None of the mov instruction effect the EFLAGS register.

Immediate addressing:

mov eax, 0x12345

M Use b for binary, ¢ for octal and nothing for decimal.

B ASCII data requires a set of apostrophes:

mov eax, 'A’ ;Moves ASCII value 0x41 into eax.

The value of the operand is given as a constant in the instruction stream.

llllllllllllllllllllllllllll

11

Systems Design & Programming CMPE 310

Data Addressing Modes

Register and immediate addressing example:
global main
. section .text ;start of the code segment.
main:
mov eax, 0 ; Immediate addressing.
mov ebx, 0x0000
mov ecx, 0

moy esi, eax ;Register addressing.

Direct addressing:
Transfers between memory and al, ax and eax.

Usually encoded in 3 bytes, sometime 4:

mov al, DATAL ;Coplies a byte from DATAL.

mov al, ds:[0x1234]
mov DATA2, ax ;Copies a word to DATA2.

mov al, [0x4321] :Some assemblers don’t allow this.

UMBC

AN HONORS UNIVERSITY IN MARYLAND

12

Systems Design & Programming CMPE 310

Data Addressing Modes
Displacement:
mov cl, DATAl ;Coplies a byte from DATAL.
mov edi, SUM ;Copies a doubleword from SUM.

Displacement instructions are encoded with up to 7 bytes (32 bit register and a 32 bit
displacement).

Direct and displacement addressing example:
global main

0000 section .data

0000 10 DATALl db 0x10

0001 0O DATA2 db 0

0000 section .text
main:

0017 A0 0000 R mov al, DATA1

001A 8B 1E 0001 R mov bx, DATA2Z

Note: Direct addressing (using al) requires 3 bytes to encode while Displacement
(using bx) requires 4.

llllllllllllllllllllllllllll

13

Systems Design & Programming CMPE 310

Data Addressing Modes

Register Indirect addressing:
Offset stored in a register is added to the segment register.

moyv ecx, |[ebx]
mov [edi], [ebx]

The memory to memory mov is allowed with string instructions.
Any register EXCEPT esp for the 80386 and up.
For eax, ebx, ecx, edx, edi and esi: The data segment is the default.
For ebp: The stack segment is the default.

Some versions of register indirect require special assembler directives byte, word,

or dword
mov al, [edi] ;Clearly a byte-sized move.
mov [edi], 0x10 ;Ambiguous, assembler can’t size.

Does [edi] address a byte, a word or a double-word?
Use:

mov byte [edi], 0x10 ;A byte transfer.

llllllllllllllllllllllllllll

14

Systems Design & Programming CMPE 310

Data Addressing Modes

Base-Plus-Index addressing:
Effective address computed as:
seg_base + base + index.

Base registers: Holds starting location of an array.
M ebp (stack)

M ebx (data)
B Any 32-bit register except esp.

Index registers: Holds offset location.

M edi
M esi
B Any 32-bit register except esp.
mov ecx, [ebx+edi] ;Data segment copy.
mov ch, [ebp+esi] ; Stack segment copy.
mov dl, [eax+ebx] ; EAX as base, EBX as index.

UMBC

AN HONORS UNIVERSITY IN MARYLAND

15

Assembly Basics / Addressing Modes

Memory

FO012AB03 [¢—

Physical Address

Data Addressing Modes
Base-Plus-Index addressing:

mov edx, [ebx+edil]
eax
ebx 0 0O00O0 1 000
ecx
edx F 012 ABO3 |=—
esp
ebp
edi 0010
esi

1010H
CS Seg
ds 0100 |— Base
Trans.

es
SS Paging

llllllllllllllllllllllllllll

16

Systems Design & Programming CMPE 310

Data Addressing Modes

Register Relative addressing:
Effective address computed as:

seg_base + base + constant.
moyv eax, [ebx+1000H] ;Data segment copy.
mov [ARRAY+esi], BL ;Constant 1is ARRAY.
mov edx, [LIST+esi+2] ;Both LIST and 2 are constants.

mov edx, [LIST+esi-2] ;Subtraction.

Same default segment rules apply with respect to ebp, ebx, edi and esi.
Displacement constant is any 32-bit signed value.

Base Relative-Plus-Index addressing:

Effective address computed as:
seg_base + base + index + constant.

mov dh, [ebx+edi+20H] ;Data segment copy.
mov ax, [FILE+ebx+edi] ;Constant is FILE.
mov [LIST+ebp+esi+4], dh ; Stack segment copy.
mov eax, [FILE+ebx+ecx+2] :32-bit transfer.

Designed to be used as a mechanism to address a two-dimensional array.

UMBC

AN HONORS UNIVERSITY IN MARYLAND

17

Assembly Basics / Addressing Modes

Data Addressing Modes
Base Relative-Plus-Index addressing:
MOV ax, [ebx+esi+100H]
eax A 316 Memory
ebx 0 0O00O0 00220
ecx
edx
esp K
ebp A316
edi 0010
esi
100H
cs Seg 1030H
ds| 1 0 00 [—> Base >
os Trans.
SS Paging

llllllllllllllllllllllllllll

18

Systems Design & Programming CMPE 310

Data/Code Addressing Modes

Scaled-Index addressing:
Effective address computed as:

mov eax, |[ebx+4*ecx]
mov [eax+2*edi-100H], cx

mov eax, [ARRAY+4*ecx]

Code Memory-Addressing Modes:
Used in jmp and call instructions.
Three forms:

M Direct
M PC-Relative
M Indirect

Direct

seg_base + base + constant*index.

;Data segment DWORD copy.
; Whow !

; Std array addressing.

Absolute jump address is stored in the instruction following the opcode.

UMBC

AN HONORS UNIVERSITY IN MARYLAND

19

Systems Design & Programming CMPE 310

Code Addressing Modes

An intersegment jump:

Opcode Offset (low) Offset (high) Segment(low) Segment(high)

E A 0000 0000 00 10

This far jmp instruction loads ¢s with 1000H and eip with 00000000H.
A far call instruction is similar.

PC-Relative

A displacement is added to the EIP register.
This constant 1s encoded into the instruction itself, as above.

Intrasegment jumps:
M Short jumps use a 1-byte signed displacement.
B Near jumps use a 4-byte signed displacement.
The assembler usually computes the displacement and selects the appropriate form.

llllllllllllllllllllllllllll

20

Systems Design & Programming CMPE 310

Code Addressing Modes

Indirect
Jump location is specified by a register.
There are three forms:

jmp [edi+2]

M Register:
Any register can be used: eax, ebx, ecx, edx, esp, ebp, edi or esi.
jmp eax ;Jump within the code seg.
M Register Indirect:
Intrasegment jumps can also be stored in the data segment.
jmp [ebx] ;Jump address in data seg.
M Register Relative:
jmp [TABLE+ebx] ;Jump table.

UMBC

AN HONORS UNIVERSITY IN MARYLAND

21

Systems Design & Programming CMPE 310

Stack Addressing Modes

The stack 1s used to hold temporary variables and stores return addresses for procedures.
push and pop instructions are used to manipulate it.

call and ret also refer to the stack implicitly.

Two registers maintain the stack, esp and ss.
A LIFO (Last-in, First-out) policy is used.
The stack grows toward lower address.
Data may be pushed from any of the registers or segment registers.
Data may be popped into any register except cs.

popfd ; Pop doubleword for stack to EFLAG.
pushfd ; Pushes EFLAG register.

push 1234H ; Pushes 1234H.

push dword [ebx] ; Pushes double word in data seg.
pushad ; eax, ecx, edx, ebx, esp, ebp, esi, ed1
pop eax ;Pops 4 bytes.

UMBC 22

llllllllllllllllllllllllllll

