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Memory Address Decoding

The processor can usually address a memory space that is much larger than the memory 
space covered by an individual memory chip. 

In order to splice a memory device into the address space of the processor, decoding is nec-
essary.

For example, the 8088 issues 20-bit addresses for a total of 1MB of memory address space.

 However, the BIOS on a 2716 EPROM has only 2KB of memory and 11 address pins.

A decoder can be used to decode the additional 9 address pins and allow the EPROM to be 
placed in any 2KB section of the 1MB address space.
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Memory Address Decoding
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Memory Address Decoding

To determine the address range that a device is mapped into:

This 2KB memory segment maps into the reset location of the 8086/8088 (FFFF0H).

NAND gate decoders are not often used
Large fan-in NAND gates are not efficient
Multiple NAND gate IC's might be required to perform such decoding
Rather the 3-to-8 Line Decoder (74LS138) is more common.

1111 1111 1XXX XXXX XXXX

A19 - A11 A10 - A0

1111 1111 1000 0000 0000 (FF800H)

To

1111 1111 1111 1111 1111 (FFFFFH)
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Memory Address Decoding
The 3-to-8 Line Decoder (74LS138)

Note that all three Enables (G2A, G2B, and G1) must be active, e.g. low, low and high, 
respectively.

Each output of the decoder can be attached to an 2764 EPROM (8K X 8).
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Inputs
Output

Enable Select
G2A G2B G1 C B A 0 1 2 3 4 5 6 7

1 X X X X X 1 1 1 1 1 1 1 1
X 1 X X X X 1 1 1 1 1 1 1 1
X X 0 X X X 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 1 1 0 1 1 1 1 1 1
0 0 1 0 1 0 1 1 0 1 1 1 1 1
0 0 1 0 1 1 1 1 1 0 1 1 1 1
0 0 1 1 0 0 1 1 1 1 0 1 1 1
0 0 1 1 0 1 1 1 1 1 1 0 1 1
0 0 1 1 1 0 1 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 1 1 1 1 0
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Memory Address Decoding

The EPROMs cover a 64KB section of memory.
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Memory Address Decoding

Yet a third possibility is a PLD (Programmable Logic Device).
PLDs come in three varieties:

 PLA (Programmable Logic Array)
 PAL (Programmable Array Logic)
 GAL (Gated Array Logic)

PLDs have been around since the mid-1970s but have only recently appeared in memory 
systems (PALs have replaced PROM address decoders).

PALs and PLAs are fuse-programmed (like the PROM).
Some are erasable (like the EPROM).

A PAL example (16L8) is shown in the text and is commonly used to decode the memory 
address, particularly for 32-bit addresses generated by the 80386DX and above.
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Memory Address Decoding
AMD 16L8 PAL decoder.

It has 10 fixed inputs (Pins 1-9, 11), two fixed outputs (Pins 12 and 19) and 6 pins that 
can be either (Pins 13-18).

AND/NOR device with logic expressions (outputs) with up to 16 ANDed inputs and 7 
ORed product terms.
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;pins  1      2        3      4       5       6       7      8     9     10
A19  A18  A17  A16  A15  A14  A13  NC  NC  GND

;pins  11    12    13    14     15     16     17    18    19    20
NC  O8    O7   O6     O5    O4   O3    O2   O1  VCC

Equations:
/O1 = A19 * A18 * A17 * A16 * /A15 * /A14 * /A13
/O2 = A19 * A18 * A17 * A16 * /A15 * /A14 *   A13
/O3 = A19 * A18 * A17 * A16 * /A15 *   A14 * /A13
/O4 = A19 * A18 * A17 * A16 * /A15 *   A14 *   A13
/O5 = A19 * A18 * A17 * A16 *   A15 * /A14 * /A13
/O6 = A19 * A18 * A17 * A16 *   A15 * /A14 *   A13
/O7 = A19 * A18 * A17 * A16 *   A15 *   A14 * /A13
/O8 = A19 * A18 * A17 * A16 *   A15 *   A14 *   A13

Programmed to decode address lines A19 - A13 onto 8 outputs.
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8088 and 80188 (8-bit) Memory Interface

The memory systems sees the 8088 as a device with:
 20 address connections (A19 to A0).
 8 data bus connections (AD7 to AD0).
 3 control signals, IO/M, RD, and WR.

We'll look at interfacing the 8088 with:
 32K of EPROM (at addresses F8000H through FFFFFH).
 512K of SRAM (at addresses 00000H through 7FFFFH).

The EPROM interface uses a 74LS138 (3-to-8 line decoder) plus 8 2732 (4K X 8) 
EPROMs.

The EPROM will also require the generation of a wait state.
The EPROM has an access time of 450ns.
The 74LS138 requires 12ns to decode.
The 8088 runs at 5MHz and only allows 460ns for memory to access data.
A wait state adds 200ns of additional time.
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8088 and 80188 (8-bit) EPROM Memory Interface

The 8088 cold starts execution at FFFF0H. JMP to F8000H occurs here.
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8088 and 80188 (8-bit) RAM Memory Interface
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8088 and 80188 (8-bit) RAM Memory Interface

The 16 62256s on the previous slide are actually SRAMs.
Access times are on order of 10ns.

Flash memory can also be interfaced to the 8088 (see text).
However, the write time (400ms!) is too slow to be used as RAM (as shown in the 
text).

Parity Checking
Parity checking is used to detect single bit errors in the memory.

The current trend is away from parity checking.

Parity checking adds 1 bit for every 8 data bits.
 For EVEN parity, the 9th bit is set to yield an even number of 1's in all 9 bits.
 For ODD parity, the 9th bit is set to make this number odd.

For 72-pin SIMMs, the number of data bits is 32 + 4 = 36 (4 parity bits).
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Parity for Memory Error Detection

74AS280 Parity Generator/Checker

This circuit generates EVEN or ODD parity for the 9-bit number placed on its inputs.
Typically, for generation, the 9th input bit is set to 0.

This circuit also checks EVEN or ODD parity for the 9-bit number.
In this case, the 9th input bit is connected to the 9th bit of memory.
For example, if the original byte has an even # of 1's (with 9th bit at GND), the parity 
bit is set to 1 (from the EVEN output).

If the EVEN output goes high during the check, then an error occurred.
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Parity for Memory Error Detection
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Error Detection

This parity scheme can only detect a single bit error.
 Block-Check Character (BCC) or Checksum.

Can detect multiple bit errors.
This is simply the two's complement sum (the negative of the sum) of the sequence of 
bytes.

No error occurred if adding the data values and the checksum produces a 0.
For example:

This is not fool proof. 
If 45 changes to 44 AND 04 changes to 05, the error is missed.

Compute the sum:

Given 4 hex data bytes: 10, 23, 45, 04

10
23
45
04
7C

Invert and add 1

0111 1100 + 1
1000 0011 + 1
1000 0100 = 84H

to get checksum byte: 
10
23
45
04

1 00

Check is made by adding and 

84

checking for 00 (discard the carry):
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Error Detection

 Cyclic Redundancy Check (CRC)
Commonly used to check data transfers in hardware such as harddrives.
Treats data as a stream of serial data n-bits long.

The bits are treated as coefficients of a characteristic polynomial, M(X) of the 
form:

M X( ) bn b
n 1− X b

n 2− X
2 ... b1X

n 1−
b0X

n+ + + + +=

M X( ) 0 0X1 1X2 0X3 0X4 1X5 1X6 0X7 1X8+ + + + + + + + +=

where b0 is the least significant bit while bn is the most significant bit. 

For the 16-bit data stream: 26F0H = 0010 0110 1111 0000

1X9 1X10 1X11 0X12 0X13 0X14 0X15+ + + + + +

M X( ) 1X2 1X5 1X6 1X8 1X9 1X10 1X11+ + + + + +=
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Error Detection

 Cyclic Redundancy Check (CRC) (cont.)

The CRC is found by applying the following equation.

G(X) is the called the generator polynomial and has special properties.

A commonly used polynomial is:

The remainder R(X) is appended to the data block.
When the CRC and R(X) is computed by the receiver, R(X) should be zero.

Since G(X) is of power 16, the remainder, R(X), cannot be of order higher than 15.
Therefore, no more than 2 bytes are needed independent of the data block size.

CRC M X( )Xn

G X( )
--------------------- Q X( ) R X( )+= =

Q(X) is the quotient

R(X) is the remainder

G X( ) X
16

X
15

X
2 1+ + +=
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Error Detection
 Cyclic Redundancy Check (CRC) (cont.)

M X( )X16

G X( )
------------------------- X

27
X

26
X

25
X

24
X

22
X

21
X

18
+ + + + + +

X
16

X
15

X
2

1+ + +
--------------------------------------------------------------------------------------------------------------=

X
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1+ + +  X
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+ + + + + +
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+
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+ ++
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+ X
13

X
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+
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17

          X
13

+

+
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...
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X 1+ + + + +

X
13

X
11

+
+

X
9
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X
6

X
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X
2

+ + + ++

R X( ) X15 X13 X9 X8 X6 X4 X3 X 1+ + + + + + + +=

Final Solution is:

Value appended is the reverse coefficient value 1101 1010 1100 0101 = DAC5H
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Error Correction

Parity, BCC and CRC are only mechanisms for error detection.
The system is halted if an error is found in memory.

Error correction is starting to show up in new systems.
SDRAM has ECC (Error Correction Code).

Correction will allow the system can continue operating.
If two errors occur, they can be detected but not corrected.
Error correction will of course cost more in terms of extra bits.

Error correction is based on Hamming Codes.
There is lots of theory here but our focus will be on implementation.
The objective is to correct any single bit errors in an 8-bit data byte.

In other words, we need 4 parity bits to correct single bit errors.
Note that the parity bits are at bit positions that are powers of 2.

The data bits of the byte are labeled X3, X5, X6, X7, X9, X10, X11 and X12.

The parity bits are labeled P1, P2, P4 and P8.
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Error Correction
Hamming Codes (cont).

P1 is generated by computing the parity of X3, X5, X7, X9, X11, X13, X15.

These numbers have a 1 in bit position 1 of the subscript in binary.

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

P1
P2

P3

P4

3
4

2
1
0

5
6
7
8
9
10
11
12
13
14
15

1234

P1 is assigned even parity using 
X3, X5, X7, X9, X11, X13, X15 

P2 is assigned even parity using 
X3, X6, X7, X10, X11, X14, X15 

P3 is assigned even parity using 
X5, X6, X7, X12, X13, X14, X15 

P4 is assigned even parity using 
X9, X10, X11, X12, X13, X14, X15 

Note that each data bit is used in the parity 
computation of at least 2 P bits. 

Given data byte: 
11010010

P1 uses blue bits: 

Not used since we are correcting byte data.

1 1 0 1 0 0 1 0
35679101112

P1 even parity is 1. 

P2 uses brown bits: 

1 1 0 1 0 0 1 0
35679101112

P2 even parity is 1. 

1 1 0 1 0 0 1 0

1 1 0 1 0 0 1 0

P3 uses cyan bits: 

P3 even parity is 0. 

P4 uses purple bits: 

P4 even parity is 1. 

35679101112

35679101112
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Error Correction

Hamming Codes (cont).

110110010011
Parity encoded data:

If X10 flips from 0 -> 1, then the check gives the location of the bit error as:

1 1 1 1 1 0 0 1 0
35679101112

P1 even parity is 0. 
1 1 1 1 1 0 0 1 0 P2 even parity is now 1. 
0 1 1 1 1 0 0 1 0

1 1 1 1 1 0 0 1 0
P3 even parity is 0. 
P4 even parity is now 1. 

Flipped

P

The position of the bit flip is given by:

Since these are NOT 0,
there was an error.

P4P3P2P1 ,which is 1010 or 10 decimal.
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Parity for Memory Error Correction

The 74LS636 corrects errors by storing 5 parity bits with each byte of data.
The pinout consists of:
 8 data I/O pins
 5 check bit I/O pins
 2 control pins
 2 error outputs

Single error flag (SEF)
Double error flag (DEF).

CB2

1
2
3
4
5
6
7

15

11

20
19

16

74
L

S6
36 17

18
DB2
DB3
DB4
DB5

VCC

DB1
DB0

S0

SEF
DEF

CB1
CB0

S1

9
8

10
12
13
14

DB6
DB7

GND

CB3
NC
CB4

See the text for an example of its use in a circuit.


