
1

Systems Design & Programming CMPE 310Memory

Memory Address Decoding

The processor can usually address a memory space that is much larger than the memory
space covered by an individual memory chip.

In order to splice a memory device into the address space of the processor, decoding is nec-
essary.

For example, the 8088 issues 20-bit addresses for a total of 1MB of memory address space.

 However, the BIOS on a 2716 EPROM has only 2KB of memory and 11 address pins.

A decoder can be used to decode the additional 9 address pins and allow the EPROM to be
placed in any 2KB section of the 1MB address space.

2

Systems Design & Programming CMPE 310Memory

Memory Address Decoding

A0
A1

A10

O0
O1

O7

... ...

CS

RD of 8088/86 Or MRDC bus signal.

2716

IO/M

A19

A18

A17

A16

A15

A14

A13

A12

A11

Address Bus Data Bus

Logic 0 when A11 through A19 are all 1.

(2K X 8)

(Book shows OE connection for RD but chip definition does NOT have this pin)

EPROM

3

Systems Design & Programming CMPE 310Memory

Memory Address Decoding

To determine the address range that a device is mapped into:

This 2KB memory segment maps into the reset location of the 8086/8088 (FFFF0H).

NAND gate decoders are not often used
Large fan-in NAND gates are not efficient
Multiple NAND gate IC's might be required to perform such decoding
Rather the 3-to-8 Line Decoder (74LS138) is more common.

1111 1111 1XXX XXXX XXXX

A19 - A11 A10 - A0

1111 1111 1000 0000 0000 (FF800H)

To

1111 1111 1111 1111 1111 (FFFFFH)

4

Systems Design & Programming CMPE 310Memory

Memory Address Decoding
The 3-to-8 Line Decoder (74LS138)

Note that all three Enables (G2A, G2B, and G1) must be active, e.g. low, low and high,
respectively.

Each output of the decoder can be attached to an 2764 EPROM (8K X 8).

G2A

G2B

G1

A

B

C

0

1

2

3

4

5

6

7E
na

bl
e

Se
le

ct
 I

np
ut

s

O
ut

pu
ts

Inputs
Output

Enable Select
G2A G2B G1 C B A 0 1 2 3 4 5 6 7

1 X X X X X 1 1 1 1 1 1 1 1
X 1 X X X X 1 1 1 1 1 1 1 1
X X 0 X X X 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 1 1 1 1 1 1 1
0 0 1 0 0 1 1 0 1 1 1 1 1 1
0 0 1 0 1 0 1 1 0 1 1 1 1 1
0 0 1 0 1 1 1 1 1 0 1 1 1 1
0 0 1 1 0 0 1 1 1 1 0 1 1 1
0 0 1 1 0 1 1 1 1 1 1 0 1 1
0 0 1 1 1 0 1 1 1 1 1 1 0 1
0 0 1 1 1 1 1 1 1 1 1 1 1 0

5

Systems Design & Programming CMPE 310Memory

Memory Address Decoding

The EPROMs cover a 64KB section of memory.

G2A

G2B
G1

A

B

C

0
1
2
3
4
5
6
7

A0

A12
O0

O7

...
...

CS

2764

A16

A17
A18
A19

A13

A14

A15

CS
CS

CS
CS

CS
CS

CS

RD of 8088/86

Data Bus

Address Bus

F2000-F3FFF

F0000-F1FFF

F4000-F5FFF

F6000-F7FFF

F8000-F9FFF

FA000-FBFFF

FC000-FDFFF

FE000-FFFFF

Address space
F0000H-FFFFFH

A13 through A15 select a 2764
A16 through A19 enable the decoder

(8K X 8)

74
L

S1
38 EPROM

6

Systems Design & Programming CMPE 310Memory

Memory Address Decoding

Yet a third possibility is a PLD (Programmable Logic Device).
PLDs come in three varieties:

 PLA (Programmable Logic Array)
 PAL (Programmable Array Logic)
 GAL (Gated Array Logic)

PLDs have been around since the mid-1970s but have only recently appeared in memory
systems (PALs have replaced PROM address decoders).

PALs and PLAs are fuse-programmed (like the PROM).
Some are erasable (like the EPROM).

A PAL example (16L8) is shown in the text and is commonly used to decode the memory
address, particularly for 32-bit addresses generated by the 80386DX and above.

7

Systems Design & Programming CMPE 310Memory

Memory Address Decoding
AMD 16L8 PAL decoder.

It has 10 fixed inputs (Pins 1-9, 11), two fixed outputs (Pins 12 and 19) and 6 pins that
can be either (Pins 13-18).

AND/NOR device with logic expressions (outputs) with up to 16 ANDed inputs and 7
ORed product terms.

O3

1
2
3
4
5
6
7

15

11

20
19

16

16
L

8 17
18

I4
I5
I6
I7

VCC

I3
I2

O6

O8
I1

O4
O5

O7

9
8

10
12
13
14

I8
I9

GND

O2
O1
I10

;pins 1 2 3 4 5 6 7 8 9 10
A19 A18 A17 A16 A15 A14 A13 NC NC GND

;pins 11 12 13 14 15 16 17 18 19 20
NC O8 O7 O6 O5 O4 O3 O2 O1 VCC

Equations:
/O1 = A19 * A18 * A17 * A16 * /A15 * /A14 * /A13
/O2 = A19 * A18 * A17 * A16 * /A15 * /A14 * A13
/O3 = A19 * A18 * A17 * A16 * /A15 * A14 * /A13
/O4 = A19 * A18 * A17 * A16 * /A15 * A14 * A13
/O5 = A19 * A18 * A17 * A16 * A15 * /A14 * /A13
/O6 = A19 * A18 * A17 * A16 * A15 * /A14 * A13
/O7 = A19 * A18 * A17 * A16 * A15 * A14 * /A13
/O8 = A19 * A18 * A17 * A16 * A15 * A14 * A13

Programmed to decode address lines A19 - A13 onto 8 outputs.

8

Systems Design & Programming CMPE 310Memory

8088 and 80188 (8-bit) Memory Interface

The memory systems sees the 8088 as a device with:
 20 address connections (A19 to A0).
 8 data bus connections (AD7 to AD0).
 3 control signals, IO/M, RD, and WR.

We'll look at interfacing the 8088 with:
 32K of EPROM (at addresses F8000H through FFFFFH).
 512K of SRAM (at addresses 00000H through 7FFFFH).

The EPROM interface uses a 74LS138 (3-to-8 line decoder) plus 8 2732 (4K X 8)
EPROMs.

The EPROM will also require the generation of a wait state.
The EPROM has an access time of 450ns.
The 74LS138 requires 12ns to decode.
The 8088 runs at 5MHz and only allows 460ns for memory to access data.
A wait state adds 200ns of additional time.

9

Systems Design & Programming CMPE 310Memory

8088 and 80188 (8-bit) EPROM Memory Interface

The 8088 cold starts execution at FFFF0H. JMP to F8000H occurs here.

G2A

G2B
G1

A

B

C

0
1
2
3
4
5
6
7

A0

A11
O0

O7

...
...

CS

2732

A15

A17
A18

A19

A12

A13

A14

CS
CS

CS
CS

CS
CS

CS

RD

Data Bus

Address Bus

Address space

F8000H-FFFFFH

(4K X 8)

74LS138

OE

A16

WAIT

IO/M

5V

1K

To wait state generator

10

Systems Design & Programming CMPE 310Memory

8088 and 80188 (8-bit) RAM Memory Interface

A0

A14

O0

O7

... ...

CS

A18

A19

CS
CS
CS
CS

CS
CS
CS

OE

IO/M

WE

CS
CS
CS
CS

CS
CS
CS

A0

A14

O0

O7

... ...

CS
OE
WE

Data Bus

(3
2K

 X
 8

)

WR

A15
A16
A17

1G 2G

74
L

S2
44

B
uf

fe
r

RD

G

Dir

74
L

S2
45

B
D

 B
uf

fe
r

G2A
G2B

G1

A
B
C

0
1
2
3
4
5
6
7

G2A
G2B

G1

A
B
C

0
1
2
3
4
5
6
7

Address Bus

74
L

S1
38

A14

A9
A10
A11
A12
A13

1G 2G
74

L
S2

44
B

uf
fe

r

A8

G2A
G2B

G1

A
B
C

0
1
2
3
4
5
6
7

A6
A7

A0
A1
A2
A3
A4
A5

1G 2G

74
L

S2
44

B
uf

fe
r

62
25

6

(3
2K

 X
 8

)
62

25
6

3

2

74
L

S1
38

74
L

S1
38

4

11

Systems Design & Programming CMPE 310Memory

8088 and 80188 (8-bit) RAM Memory Interface

The 16 62256s on the previous slide are actually SRAMs.
Access times are on order of 10ns.

Flash memory can also be interfaced to the 8088 (see text).
However, the write time (400ms!) is too slow to be used as RAM (as shown in the
text).

Parity Checking
Parity checking is used to detect single bit errors in the memory.

The current trend is away from parity checking.

Parity checking adds 1 bit for every 8 data bits.
 For EVEN parity, the 9th bit is set to yield an even number of 1's in all 9 bits.
 For ODD parity, the 9th bit is set to make this number odd.

For 72-pin SIMMs, the number of data bits is 32 + 4 = 36 (4 parity bits).

12

Systems Design & Programming CMPE 310Memory

Parity for Memory Error Detection

74AS280 Parity Generator/Checker

This circuit generates EVEN or ODD parity for the 9-bit number placed on its inputs.
Typically, for generation, the 9th input bit is set to 0.

This circuit also checks EVEN or ODD parity for the 9-bit number.
In this case, the 9th input bit is connected to the 9th bit of memory.
For example, if the original byte has an even # of 1's (with 9th bit at GND), the parity
bit is set to 1 (from the EVEN output).

If the EVEN output goes high during the check, then an error occurred.

A

1
2
3
4
5
6
7

9
8

14
13

10

74
A

S2
80

11
12

I
EVEN

ODD
GND

VCC

NC
H

D

F
G

B
C

E

9-bit parity generator/checker

Number of inputs A
thru I that are HIGH

Outputs
EVEN ODD

0, 2, 4, 6, 8

1, 3, 5, 7, 9

H L

L H

13

Systems Design & Programming CMPE 310Memory

Parity for Memory Error Detection

A0

A14

O0

O7

... ...

CS

A18

OE

RESET

WEWR

A15
A16
A17

RD

G2A
G2B

G1

A
B
C

0
1
2
3
4
5
6
7

74
L

S1
38

(3
2K

 X
 8

)
62

25
6

A0

A14

O0

O7

... ...

CS
OE
WE

(3
2K

 X
 8

)
62

25
6

62
87

(6
4K

 X
 1

)

A0

A15

...

CE
WE

A
B
C
D
E
F
G
H
I

A
B
C
D
E
F
G
H
I

74
L

S2
80

74
L

S2
80

EVEN
ODD

EVEN
ODD

74
L

S7
4Q

Q

D

CLK

DO
DI

Generator

Checker

IO/M

A19

D
at

a
B

us
Clear

NMI

Address Bus

14

Systems Design & Programming CMPE 310Memory

Error Detection

This parity scheme can only detect a single bit error.
 Block-Check Character (BCC) or Checksum.

Can detect multiple bit errors.
This is simply the two's complement sum (the negative of the sum) of the sequence of
bytes.

No error occurred if adding the data values and the checksum produces a 0.
For example:

This is not fool proof.
If 45 changes to 44 AND 04 changes to 05, the error is missed.

Compute the sum:

Given 4 hex data bytes: 10, 23, 45, 04

10
23
45
04
7C

Invert and add 1

0111 1100 + 1
1000 0011 + 1
1000 0100 = 84H

to get checksum byte:
10
23
45
04

1 00

Check is made by adding and

84

checking for 00 (discard the carry):

15

Systems Design & Programming CMPE 310Memory

Error Detection

 Cyclic Redundancy Check (CRC)
Commonly used to check data transfers in hardware such as harddrives.
Treats data as a stream of serial data n-bits long.

The bits are treated as coefficients of a characteristic polynomial, M(X) of the
form:

M X() bn b
n 1− X b

n 2− X
2 ... b1X

n 1−
b0X

n+ + + + +=

M X() 0 0X1 1X2 0X3 0X4 1X5 1X6 0X7 1X8+ + + + + + + + +=

where b0 is the least significant bit while bn is the most significant bit.

For the 16-bit data stream: 26F0H = 0010 0110 1111 0000

1X9 1X10 1X11 0X12 0X13 0X14 0X15+ + + + + +

M X() 1X2 1X5 1X6 1X8 1X9 1X10 1X11+ + + + + +=

16

Systems Design & Programming CMPE 310Memory

Error Detection

 Cyclic Redundancy Check (CRC) (cont.)

The CRC is found by applying the following equation.

G(X) is the called the generator polynomial and has special properties.

A commonly used polynomial is:

The remainder R(X) is appended to the data block.
When the CRC and R(X) is computed by the receiver, R(X) should be zero.

Since G(X) is of power 16, the remainder, R(X), cannot be of order higher than 15.
Therefore, no more than 2 bytes are needed independent of the data block size.

CRC M X()Xn

G X()
--------------------- Q X() R X()+= =

Q(X) is the quotient

R(X) is the remainder

G X() X
16

X
15

X
2 1+ + +=

17

Systems Design & Programming CMPE 310Memory

Error Detection
 Cyclic Redundancy Check (CRC) (cont.)

M X()X16

G X()
------------------------- X

27
X

26
X

25
X

24
X

22
X

21
X

18
+ + + + + +

X
16

X
15

X
2

1+ + +
--=

X
16

X
15

X
2

1+ + + X
27

X
26

X
25

X
24

X
22

X
21

X
18

+ + + + + +

X
27

X
26

+ X
13

X
11

++

X
25

X
24

X
22

X
21

X
18

+ + + +

X
25

X
24

+ X
11

X
9

+

X
22

X
21

X
18

+ + X
9

+

+

X
22

X
21

+ X
8

X
6

++

X
18 X

9
X

8
X

6
+ ++

X
13+

+ X
13

X
18

X
17

+ X
4

X
2

+

X
17

 X
13

+

+

X
17

X
16

+ X
3

X+
...

X
11

X
9

X
6

X
2

X 1+ + + + +

X
13

X
11

+
+

X
9

X
8

X
6

X
4

X
2

+ + + ++

R X() X15 X13 X9 X8 X6 X4 X3 X 1+ + + + + + + +=

Final Solution is:

Value appended is the reverse coefficient value 1101 1010 1100 0101 = DAC5H

18

Systems Design & Programming CMPE 310Memory

Error Correction

Parity, BCC and CRC are only mechanisms for error detection.
The system is halted if an error is found in memory.

Error correction is starting to show up in new systems.
SDRAM has ECC (Error Correction Code).

Correction will allow the system can continue operating.
If two errors occur, they can be detected but not corrected.
Error correction will of course cost more in terms of extra bits.

Error correction is based on Hamming Codes.
There is lots of theory here but our focus will be on implementation.
The objective is to correct any single bit errors in an 8-bit data byte.

In other words, we need 4 parity bits to correct single bit errors.
Note that the parity bits are at bit positions that are powers of 2.

The data bits of the byte are labeled X3, X5, X6, X7, X9, X10, X11 and X12.

The parity bits are labeled P1, P2, P4 and P8.

19

Systems Design & Programming CMPE 310Memory

Error Correction
Hamming Codes (cont).

P1 is generated by computing the parity of X3, X5, X7, X9, X11, X13, X15.

These numbers have a 1 in bit position 1 of the subscript in binary.

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

P1
P2

P3

P4

3
4

2
1
0

5
6
7
8
9
10
11
12
13
14
15

1234

P1 is assigned even parity using
X3, X5, X7, X9, X11, X13, X15

P2 is assigned even parity using
X3, X6, X7, X10, X11, X14, X15

P3 is assigned even parity using
X5, X6, X7, X12, X13, X14, X15

P4 is assigned even parity using
X9, X10, X11, X12, X13, X14, X15

Note that each data bit is used in the parity
computation of at least 2 P bits.

Given data byte:
11010010

P1 uses blue bits:

Not used since we are correcting byte data.

1 1 0 1 0 0 1 0
35679101112

P1 even parity is 1.

P2 uses brown bits:

1 1 0 1 0 0 1 0
35679101112

P2 even parity is 1.

1 1 0 1 0 0 1 0

1 1 0 1 0 0 1 0

P3 uses cyan bits:

P3 even parity is 0.

P4 uses purple bits:

P4 even parity is 1.

35679101112

35679101112

20

Systems Design & Programming CMPE 310Memory

Error Correction

Hamming Codes (cont).

110110010011
Parity encoded data:

If X10 flips from 0 -> 1, then the check gives the location of the bit error as:

1 1 1 1 1 0 0 1 0
35679101112

P1 even parity is 0.
1 1 1 1 1 0 0 1 0 P2 even parity is now 1.
0 1 1 1 1 0 0 1 0

1 1 1 1 1 0 0 1 0
P3 even parity is 0.
P4 even parity is now 1.

Flipped

P

The position of the bit flip is given by:

Since these are NOT 0,
there was an error.

P4P3P2P1 ,which is 1010 or 10 decimal.

21

Systems Design & Programming CMPE 310Memory

Parity for Memory Error Correction

The 74LS636 corrects errors by storing 5 parity bits with each byte of data.
The pinout consists of:
 8 data I/O pins
 5 check bit I/O pins
 2 control pins
 2 error outputs

Single error flag (SEF)
Double error flag (DEF).

CB2

1
2
3
4
5
6
7

15

11

20
19

16

74
L

S6
36 17

18
DB2
DB3
DB4
DB5

VCC

DB1
DB0

S0

SEF
DEF

CB1
CB0

S1

9
8

10
12
13
14

DB6
DB7

GND

CB3
NC
CB4

See the text for an example of its use in a circuit.

