Systems Design & Programming	Memory	CMPE 310
Memory Types		
Two basic types:		
ROM: Read-only memory		
RAM: Read-Write memory	7	
Four commonly used memories:		
○Flash, EEPROM		
O Static RAM (SRAM)		
ODynamic RAM (DRAM), SDR	RAM, RAMBUS, DDR RAM	
Generic pin configuration:		
	connection Write	
A ₀ A ₁	A _N WE O	
01		
	OE • Read	
	Select	
$O_0 O_1 \dots$	O _{N CS} O	
Output/Input-ou	utput connection	
	1	

Memory

Memory Chips

The number of address pins is related to the number of *memory locations*. Common sizes today are **1K** to **256M** locations. Therefore, between 10 and 28 address pins are present.

The data pins are typically *bi-directional* in read-write memories.
The number of data pins is related to the *size of the memory location*.
For example, an 8-bit wide (byte-wide) memory device has 8 data pins.
Catalog listing of *1K X 8* indicate a byte addressable 8K bit memory with 10 address pins.

Each memory device has at least one *chip select* (\overline{CS}) or *chip enable* (\overline{CE}) or *select* (\overline{S}) pin that enables the memory device.

This enables read and/or write operations.

If more than one are present, then all must be 0 in order to perform a read or write.

Systems Design & Programming

Memory

Memory Chips

Each memory device has at least one control pin.

For ROMs, an *output enable* (\overline{OE}) or *gate* (\overline{G}) is present.

The \overline{OE} pin enables and disables a set of tristate buffers.

For RAMs, a *read-write* ($\overline{R/W}$) or *write enable* (\overline{WE}) and *read enable* (\overline{OE}) are present.

For dual control pin devices, it must be hold true that both are not 0 at the same time.

ROM:

Non-volatile memory: Maintains its state when powered down. There are several forms:

ROM: Factory programmed, cannot be changed. Older style.

PROM: Programmable Read-Only Memory.

Field programmable but only once. Older style.

EPROM: Erasable Programmable Read-Only Memory.

Reprogramming requires up to 20 minutes of high-intensity UV light exposure.

Memory Chips

ROMs (cont):

Flash, EEPROM: Electrically Erasable Programmable ROM.
 Also called EAROM (Electrically Alterable ROM) and NOVRAM (NOn-Volatile RAM).
 Writing is much slower than a normal RAM.

Used to store setup information, e.g. video card, on computer systems. Can be used to replace EPROM for BIOS memory.

Chip Deselect to Output Float PD/PGM=V_{IL} t_{DF} ••• • • • • • •

This EPROM requires a wait state for use with the 8086 (460ns constraint).

0

0

t_{OH}

Addr. to Output Hold

 $PD/PGM = \overline{CS} = V_{II}$

ns

ns

100

ystems Design & Programming	Memory		CMPE 31
SRAMs TI TMS 4016 SRAM (2K X 8): A7 1 24 V _{CC} A6 2 23 A8			
$\begin{array}{c} \mathbf{A_5} \\ \mathbf{A_5} \\ \mathbf{A_4} \\ \mathbf{A_4} \\ \mathbf{A_4} \\ \mathbf{A_4} \\ \mathbf{A_5} \\ \mathbf{A_6} \\ A_6$	Pin(s)	Function	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A ₀ -A ₁₀	Address	
$A_1 = 7 \qquad \checkmark \qquad 18 = S$	DQ ₀ -DQ ₇	Data In/Data Out	
$\begin{array}{c} \mathbf{A_0} \\ \mathbf{DQ_0} \\ \mathbf{DQ_0} \\ 0 \end{array} \begin{array}{c} \mathbf{B} \\ \mathbf{DQ_0} \\ \mathbf{DQ_0} \\ 0 \end{array} \begin{array}{c} \mathbf{B} \\ \mathbf{DQ_0} \\ \mathbf{DQ_0} \\ 0 \end{array} \begin{array}{c} \mathbf{B} \\ \mathbf{DQ_0} \\ \mathbf{DQ_0} \\ 0 \end{array} \begin{array}{c} \mathbf{B} \\ \mathbf{DQ_0} \\ \mathbf{DQ_0} \\ 0 \end{array} $	S (CS)	Chip Select	
$\mathbf{DQ}_1 = 10$ 15 \mathbf{DQ}_5	G (OE)	Read Enable	
$\begin{array}{c c} \mathbf{DQ}_2 & 11 & 14 & \mathbf{DQ}_4 \\ \mathbf{GND} & 12 & 13 & \mathbf{DQ}_3 \end{array}$	W (WE)	Write Enable	
2K x 8 SRAM			

Virtually identical to the EPROM with respect to the pinout.

However, access time is faster (250ns).

See the timing diagrams and data sheets in text.

SRAMs used for *caches* have access times as low as 10ns.

DRAMs

DRAM:

SRAMs are limited in size (up to about 128K X 8). DRAMs are available in much larger sizes, e.g., 64M X 1.

DRAMs MUST be refreshed (rewritten) every 2 to 4 ms Since they store their value on an integrated capacitor that loses charge over time.

This refresh is performed by a special circuit in the DRAM which refreshes the entire memory.

Refresh also occurs on a normal read or write.

More on this later.

The large storage capacity of DRAMs make it impractical to add the required number of address pins.

Instead, the address pins are *multiplexed*.

Systems Design & Programming

Memory

DRAMs

TI TMS4464 DRAM (64K X 4):

Pin(s)	Function	
A ₀ -A ₇	Address	
DQ ₀ -DQ ₃	Data In/Data Out	
RAS	Row Address Strobe	
CAS	Column Address Strobe	
G	Output Enable	
W	Write Enable	

The TMS4464 can store a total of 256K bits of data.

It has **64K** addressable locations which means it needs **16** address inputs, but it has only **8**.

The row address $(A_0 \text{ through } A_7)$ are placed on the address pins and strobed into a set of internal latches.

The column address (A_8 through A_{15}) is then strobed in using CAS.

Memory

DRAMs

Pentiums have a 64-bit wide data bus.

The 30-pin and 72-pin SIMMs are not used on these systems.
Rather, 64-bit DIMMs (*Dual In-line Memory Modules*) are the standard.
These organize the memory 64-bits wide.
The board has DRAMs mounted on both sides and is 168 pins.

Sizes include 2M X 64 (16M), 4M X 64 (32M), 8M X 64 (64M) and 16M X 64 (128M).

The DIMM module is available in **DRAM**, **EDO** and **SDRAM** (and **NVRAM**) with and without an EPROM.

The EPROM provides information about the size and speed of the memory device for PNP applications.