Sensing: using features
Lines and planes

Many slides adapted from slides © R. Siegwart, Steve Seitz, J. Tim Oates, David Scaramuzza, Chris Clark
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What's a Feature? 3&5 )

- Raw data is cumbersome, huge, and redundant

i | In practice, Video cameras
,i 8 . these are produce
! millionsX  30/second

millions

- Don't need every pixel or reading
- But what data do you need?
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- Getting some subset is feature extraction
« "Features” can be combinations of traits, the result
of math operations, and many other things
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Motivation

« Raw perceptual data: huge to process, store*
- Compact features require less storage (e.g. lines,
planes)

= Provides rich and accurate information
«+ For some tasks!

- Basis for high level features (e.g. more abstract
features, objects)

Environment Mapping adP

- Features for
Localization "
+ Compact map
26 bytes / m2 o

- Multi-hypothesis
tracking

- Topological map for
global planning
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- Raw data for local o
planning and
obstacle avoidance s

Line Extraction: Motivation Z}; ;

« Map of the ASL hallway built using line segments
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Plane Extraction: Motivation

« Map of the ASL hallway built using orthogonal
planes constructed from line segments
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Example Result @;
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Line Extraction %

- Raw data: any depth sensor

« In practice, mostly laser range finders
- Dense and accurate range measurements
- High sampling rate, high angular resolution
- Good range distance and resolution.

= Why line segments?
- The simplest geometric primitive
- Compact, requires almost no storage
« Provides rich and accurate information
« Matches indoor human environments, e.g., offices
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Line Extraction: The Problem %

« Three main problems:
- How many lines should we find?

+ Which points belong to what line?
- This problem is called SEGMENTATION

- Given points that belong to a line, how to
estimate parameters?

- This problem is called LINE FITTING

Line Extraction T

&

- Algorithms:
- Split and merge
« Linear regression
+ RANSAC
- Hough-Transform
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Line Extraction: The Problem 'ﬁ]

"

» Scan point in polar form: (g, 6)

= Assumptions:

- Gaussian noise* in [0, o] for
distance measurement @

- Negligible angular uncertainty

- Line model in polar form:
« xcosa+ysina=r
- SI<OS<T
- r>0

* Values that noise can take on are distributed on a normal curve 12
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Split-and-Merge @J

"

« The most popular algorithm
» Originated from computer vision.
- A recursive procedure of fitting and splitting.

- Aslightly different version, called Iterative-End-
Point-Fit, simply connects the end points for
line fitting.
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Algorithm 1: Split-and-Merge %

&

Setup

« Initialize set S to contain all points

* Setsome distance threshold t

Split

« Fitaline to pointsin currentsetS

+ Find the mostdistant point from the line

« Ifdistance <t, repeat with left set Siand right
setS2

Merge

« Iftwo consecutive segments are
close/colinear enough, obtain the common
line and find the most distant point

* Ifmostdistant point <t, merge segments
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Split-and-Merge Example
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RANSAC Algorithm

= RANSAC is an iterative method

= Drawback: A nondeterministic method, so
results are different between runs

- Probability to find a line without outliers
increases as more iterations are used
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Split-and-Merge

Split

Split

No more Merge
Splits
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RANSAC Algorithm

» Random Sample Consensus (“Ran-sack”)

- General, robust algorithm to fit models in the
presence of outliers

- Good tool when goal is to identify points that
satisfy a mathematical model or function (like a
line or plane)

- Typical applications in robotics
- Line extraction from 2D range data
« Plane extraction from 3D range data
« Structure from motion
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Algorithm 3: RANSAC

Algorithm 4: RANSAC

. Initial: let 4 be a set of N points

&)

. repeat

w

. Randomly select a sample of 2 points from 4

.

. Fit a line through the 2 points

v

Compute the distances of all other points to this line

o

1

. Store these inliers

%)

. until Maximum number of iterations & reached

©

. The set with the maximum number of inliers is chosen as a solution to the problem
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Construct the inlier set (i.e. count the number of points with distance to the line < d)
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RANSAC
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RANSAC <
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RANSAC | B

ALL-INLIER SAMPLE
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How Many lterations?

« How many iterations does RANSAC need?

= Can't know in advance if observed set contains
maximum number of inliers

- Ideal: check all possible combinations of 2
points

= N(N-1)/2 (for a line) — infeasible if N is too large

« Do not need to check all combinations —just a
subset if we have a rough estimate of the
percentage of inliers in our dataset

= This can be done in a probabilistic way
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Extraction of Planar Features "b,-,

« Goal: extract planar features from a dense
point cloud
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RANSAC lterations

« Let w be fraction of inliners: w = number of
inliers / N
- Niis the total number of points.
- wis also the probability of selecting an inlier

» p = probability of finding a set of points
without outliers

- w?2: probability that both points are inliers

- 1-w? probability that at least
one of these two points is an

. logl=p)
outlier

 log(1-w?)
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RANSAC for Planes

« For every cell, use Ransac to segment the best

threshold = 0.05; // predefined threshold in [m]
m = 100; // predefined the number of ransac iterations
for every cell ci do

npmax = 0; // initialize maximum number of found closest points

pseudo code

for m ransac-iterations do
randomly choosenB different points pl,p2,p3 from points
ci;

contained in ce
calculate plane p, i.e. normal n and orth. distance to
origin d defined by pl,p2,p3;

np = 0;
for all points pj in ci do
calculate orthuquna'l distance s from pj to p;
if (s < threshold)
np++;
endif
endfor

// maximize the number of points close to the plane
if (np > npmax)
npmax = np; // the number of points close to the plane
e pbest = p; // this is the found best plane
endi

endfor

endfor.
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Example Result

raw 3D scan
_— o

plane segmentation result

extracted planes for every cube
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Experimental Results

estimation not estimation
using planar using planar
features features
depicted by red

coordinate

frames
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Praobabilistic Feature-Based 3D SLAM

3

close-up of a reconstructed hallway

g

close-up of reconstructed bookshelves

The same experiment as before but
this time planar segments are
visualized and integrated into the
estimation process
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