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Sensing: using features
Lines and planes

Many slides adapted from slides © R. Siegwart, Steve Seitz, J. Tim Oates, David Scaramuzza, Chris Clark
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§ Raw data is cumbersome, huge, and redundant

§ Don’t need every pixel or reading
§ But what data do you need?

§ Getting some subset is feature extraction
§ “Features” can be combinations of traits, the result 

of math operations, and many other things

What’s a Feature?

R=125G=125
B=213
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

R=125G=125
B=213

In practice, 
these are 
millions×
millions

Video cameras 
produce 
30/second

Still a 
cat

Cat? 
Pig?
Rose?

Cat

en.wikipedia.org/wiki/Heterochromia_iridum#/media/File:June_odd-eyed-cat_cropped.jpg
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§ Raw perceptual data: huge to process, store*
§ Compact features require less storage (e.g. lines, 

planes)

§ Provides rich and accurate information
§ For some tasks!

§ Basis for high level features (e.g. more abstract 
features, objects)

Motivation
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§ Features for 
Localization
§ Compact map 

26 bytes / m2
§ Multi-hypothesis 

tracking

§ Topological map for 
global planning

§ Raw data for local 
planning and 
obstacle avoidance

Environment Mapping
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§ Map of the ASL hallway built using line segments

Line Extraction: Motivation
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§ Map of the ASL hallway built using orthogonal 
planes constructed from line segments

Plane Extraction: Motivation
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Example Result

photograph of corridor at ASL raw 3D scan

extracted planes for every cubeplane segmentation result
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§ Algorithms: 
§ Split and merge 
§ Linear regression
§ RANSAC
§ Hough-Transform

Line Extraction
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§ Raw data: any depth sensor

§ In practice, mostly laser range finders
§ Dense and accurate range measurements
§ High sampling rate, high angular resolution
§ Good range distance and resolution.

§ Why line segments?
§ The simplest geometric primitive
§ Compact, requires almost no storage
§ Provides rich and accurate information
§ Matches indoor human environments, e.g., offices

Line Extraction
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§ Scan point in polar form: (ρi, θi)

§ Assumptions: 
§ Gaussian noise* in [0, σ] for 

distance measurement ρ
§ Negligible angular uncertainty

§ Line model in polar form: 
§ x cos α + y sin α = r
§ -π < α ≤ π
§ r ≥ 0

* Values that noise can take on are distributed on a normal curve

Line Extraction: The Problem

r

α
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§ Three main problems:

§ How many lines should we find?

§ Which points belong to what line?
§ This problem is called SEGMENTATION

§ Given points that belong to a line, how to 
estimate parameters?
§ This problem is called LINE FITTING

Line Extraction: The Problem
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§ The most popular algorithm 

§ Originated from computer vision.

§ A recursive procedure of fitting and splitting.

§ A slightly different version, called Iterative-End-
Point-Fit, simply connects the end points for 
line fitting.

Split-and-Merge
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Algorithm 1: Split-and-Merge

www.cs.princeton.edu/courses/archive/fall11/cos495/COS495-Lecture11-LineExtraction.pdf

Algorithm: Split-and-Merge
Setup
• InitializesetS tocontainallpoints
• Setsomedistancethresholdt
Split
• Fitalinetopoints incurrentsetS
• Findthemostdistantpoint fromtheline
• Ifdistance> t, repeatwithleftsetS1 andright
setS2

Merge
• If twoconsecutivesegmentsare
close/colinearenough, obtainthecommon
lineandfindthemostdistantpoint

• Ifmostdistantpoint≤t,mergesegments
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Split-and-Merge
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Split-and-Merge Example
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§ Random Sample Consensus (“Ran-sack”)

§ General, robust algorithm to fit models in the 
presence of outliers

§ Good tool when goal is to identify points that 
satisfy a mathematical model or function (like a 
line or plane)

§ Typical applications in robotics
§ Line extraction from 2D range data
§ Plane extraction from 3D range data
§ Structure from motion

RANSAC Algorithm
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§ RANSAC is an iterative method 

§ Drawback: A nondeterministic method, so 
results are different between runs

§ Probability to find a line without outliers 
increases as more iterations are used

RANSAC Algorithm
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Algorithm 3: RANSAC
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RANSAC
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• Select sample of 2 
points at random

RANSAC
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RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit 
the data in the 
sample
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RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each 
data point
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• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each data 
point

• Select data that 
support current 
hypothesis

RANSAC
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RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each data 
point

• Select data that 
support current 
hypothesis

• Repeat sampling

26



2/20/20

5

27

27

RANSAC
• Select sample of 2 
points at random

• Calculate model 
parameters that fit the 
data in the sample

• Calculate error 
function for each data 
point

• Select data that 
support current 
hypothesis

• Repeat sampling
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RANSAC
ALL-INLIER SAMPLE
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§ How many iterations does RANSAC need?

§ Can’t know in advance if observed set contains 
maximum number of inliers

§ Ideal: check all possible combinations of 2 
points

§ N(N-1)/2 (for a line) – infeasible if N is too large

§ Do not need to check all combinations – just a 
subset if we have a rough estimate of the 
percentage of inliers in our dataset

§ This can be done in a probabilistic way

How Many Iterations?
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§ Let w be fraction of inliners: w = number of 
inliers / N
§ N is the total number of points. 
§ w is also the probability of selecting an inlier

§ p = probability of finding a set of points 
without outliers

§ w2: probability that both points are inliers 

§ 1-w2: probability that at least 
one of these two points is an 
outlier

RANSAC Iterations
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§ Goal: extract planar features from a dense 
point cloud

Extraction of Planar Features

left wall
ceiling

right wallback wall

31

33

33

§ For every cell, use Ransac to segment the best 
plane

RANSAC for Planes

threshold = 0.05; // predefined threshold in [m]
m = 100; // predefined the number of ransac iterations

for every cell ci do

npmax = 0; // initialize maximum number of found closest points

for m ransac-iterations do

randomly choose 3 different points p1,p2,p3 from points 
contained in cell ci;

calculate plane p, i.e. normal n and orth. distance to 
origin d defined by p1,p2,p3;

np = 0;

for all points pj in ci do
calculate orthogonal distance s from pj to p;
if (s < threshold)

np++;
endif

endfor

// maximize the number of points close to the plane
if (np > npmax)

npmax = np; // the number of points close to the plane  
pbest = p; // this is the found best plane

endif

endfor

endfor

pseudo code
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Example Result

photograph of corridor at ASL raw 3D scan

extracted planes for every cubeplane segmentation result
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Probabilistic Feature-Based 3D SLAM

close-up of a reconstructed hallway

close-up of reconstructed bookshelves

The same experiment as before but 
this time planar segments are 

visualized and integrated into the 
estimation process
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Experimental Results

estimation not 
using planar 
features 

estimation 
using planar 

features 
depicted by red 

coordinate 
frames 
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