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Image: Ibrahim, Omar. (2011). Extended Kalman Filter Simultaneous Localization and Mapping (Graduation Project)

A Note on Navigation

Navigation is hard!

Encompasses (at least) four
components:

1. Perception: based on sensor data,
what do | know about my
environment?

2. Localization: Where am | in that
environment?

3. Cognition: What should | do now?
4. Motion Control: How do | do that?

Navigation is a
hard problem,
but many tasks
depend on it
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Localization # Mapping

- Mapping: creating a map of an environment

- Localization: sensor and odometry data are
used to figure out where robot is in a map

= Needs some kind of info about environment
- Typically a map of some kind

= Physical, semantic, topological

= Doesn’t care about source of information
« Could be given a map beforehand
« Or constructing the map as you go

- Localization often includes mapping as a step

Localization + Map Building

To localize or not to localize
» When is hard-coding better?

Belief representation
How do | represent the
environment and my state?
- Map representation
- What does a map contain?

And more...
Probabilistic map-based localization
- Autonomous map building
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Localization in human-scale
- "Give or take 5 meters” — in a building? On the street?

- Many sources of uncertainty

- Sensor noise, sensor aliasing, effector noise, odometric
position estimation, ...

Aliasing (coming soon)

Sensor Noise

- Sensors give “noisy” (uncertain, imperfect)
readings

- Source of sensor noise
may be environmental

« Surfaces, illumination,
background noise...

« Glass walls @

M

- Or the nature of the sensor
- Interference between ultrasonic sensors
- Cameras in high dynamic range lighting (like outside)

- Or may just be because sensors are imperfect =
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Challenge 1: Sensor Noise

= Sensor noise
drastically reduces
useful readings

- Solutions:
- Improve sensors
- Change assumptions

= "So, if we have
glass walls, we'll
see readings like..."”

- Use multiple readings
- Employ temporal and/or multi-sensor fusion

10

Challenge 2: Sensor Aliasing

- Different positions give the same sensor readings

- Robots: non-uniqueness of sensors readings is
normal
- What does that mean?

- To people, unique places look unique
- We're really good at picking up on differences
- We have really good sensors

- To robots, different places often look the same

- There is a many-to-one mapping from environmental
state to robot’s perceptual inputs o
“1o)
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Sensor Aliasing (2]

- Different places give the same readings

=

-

D
- Information from sensors often not enough to

identify position from a single reading

- Solution: localization usually based on a series of
readings IR
- Enough information is recovered by the robot over {n\%‘e/)
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Sensor Aliasing (3]

= These look
different.

= These look the
same.

= Wall in front, wall
on the right,
opening on left.
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Odometry, Dead Reckoning

Odometry: wheel sensors only
- E.g., go 5 cm, turn 10 degrees — where are you?

Dead reckoning: also use heading sensors
- Add a compass or gyroscope

Position update is partly based on
proprioceptive sensors
- Sensing movement: wheel encoders + heading sensors
- Integrate that into model of environment to get the
position
Pros: Straightforward, easy
= Cons: Errors are integrated - accumulative
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Effector (Actuator) Noise

= Causes:

- Inexact actuation + noise in sensors: Probably not
exactly 5 cm

- Environment: Duct tape is slippery!

This error is cumulative over time, but reduced
with additional sensors (not eliminated)

Errors exist on a spectrum:

Deterministic Non-deterministic

(systematic): “ (random):
“This servo always “Sometimes this servo goes
turns 2% too far” too far or not far enough”

14
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Odometry: dealing with errors: %

Deterministic errors can be eliminated with
calibration

Random errors can be described by error models
- Will always lead to uncertain position estimate

- More major sources of error:

Limited resolution during integration (time increments,
measurement resolution ...)

Misalignment of the wheels (deterministic)
Unequal wheel diameter (deterministic)

- Variation in the contact point of the wheel
Unequal floor contact (slipping, not planar ...)

15
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Some movement errors

- Range error: Integrated path length (distance) of
movement is wrong

How far has robot moved in heading direction?

= Turn error: similar to range error, but for turns
- What's robot’s 0 from starting position?
- Accumulated error over multiple turns

= Drift error: difference in wheels = error in angular
orientation
Right wheel turns 90°, left turns 89.8°. What happens?

16
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Error Severity

- Over long periods of time, turn and drift errors
far outweigh range errors.

- As 0 grows linearly, change in location grows
nonlinearly

= Why?

- Imagine moving forward a distance d on a
straight line along axis x.

= As A0 (angular error) grows, error in y will have
a component of dsin AO.

17
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Odometry & Diff. Drive *

Discrete sampling rate At

- As,, As;: right wheel, left wheel distance travelled

Changes in pose: Ax, Ay, A0
Distance between wheels (wheel base): b

x Ax
A '
p=\y p=p+| Ay
0 AO
0

* 2 wheels, shared axis, each can be rotated forward or back

18
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Odometry & Diff. Drive

Derivations

= At = Sampling rate

« As,, As; = right/left 9
wheel travel

« b =Wheel base

(distance between

wheels) These are given here. These can be
derived, but try to make mechanical/
intuitive sense of them.
Ax As = (Asy + Asy) /2
el A Ax = As cos( + A8/2)
p=p Y Ay = Assin(0 + A6/2) )
A6 AB = (As, — Asp) /b C
19
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Odometry & Diff. Drive

Kinematics
Ax = Ascos(0+A072)

Ay = Assin(0+ A072)

AQ — As,—As,
B b - | R
As — As,+ As, As, + AS/COS(G . As,.—As,)
YT T 2 2b
¥
L+ As As —As
P =f(x.»,0,As,.As)) = |y|+ As, +2 A5/Sin(e il /)
) 2 2b
0
As,—As,
i b i

This is the matrix for finding p’. Don't worry about it too

20
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Odometry & Diff. Drive

- We can assumpe:

- Left and right wheel errors are independent
« d o As,, As;: Variance of wheel errors are proportional

How to model error: Represent uncertainty of
location over time

- Using a covariance matrix of position estimate —how do
these parameters vary with respect to each other?

to distance traveled

- An initial matrix X, is known

- So we can get a covariance matrix that describes
how error varies as a function of terms.

- The derivation of this matrix is in the text — for now,
make sure you have the general idea. L

21
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Udometry:

Growth of Pose Uncertainty for Straight Line Movement

= Intuitively: how do errors grow as the robot

moves around?

Think of the circles
(error) as where the
robot might be

Errors grow slower
in x (direction of

travel) thanin y
So, robot is 9 ?

more likely to be
off to the side than
ahead or behind
of where you
expect

0.2

0.2

04

Error Propagation in Odometry

G
<3

x [m]
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Error Severity

- Errors grow slower in x (direction of travel) than y

A You think you're going this way...

24
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Error Severity

- Errors grow slower in x (direction of travel) than y

A But you're actually going this way slightly.

=+

25
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Error Severity

- Errors grow slower in x (direction of travel) than y

A So even if angular error doesn't grow...

b+ S

Expected vs. actual
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Error Severity

- Errors grow slower in x (direction of travel) than y

A So even if angular error doesn't grow...

Jﬂ’

Expected vs. actual

27
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Error Severity

- Errors grow slower in x (direction of travel) than y

A It's going more off course sideways
than front-to-back.

©)

Expected vs. actual
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Error Severity
- Errors grow slower in x (direction of travel) than y
A Drift errors end up being
greater then range errors.
PA O
(—‘—' .
>
Expected vs. actual
29
29
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Error Severity

- Errors grow slower in x (direction of travel) than y

A How far off is expected from
actual in x and y?

/‘7 i L‘ >

Expected vs. actual

30
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Error Severity

- Errors grow slower in x (direction of travel) than y

A You can see drift is increasing
much faster.

+"“’/>

(—‘—' ® oy >

Expected vs. actual
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Error Severity

- As A0 (angular error) grows, error in y will have
a component of dsin A.

A This is where our ovals come from.
>

= You can do the same thing with a curved line.

32
32
Udometry:
Growth of Pose uncertainty for Movement on a Circle
= Now imagine moving in a curve
= ErrorS dOﬂlt Stay Error Propagation in Odometry
direction of
movement
33
33
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Calibration of Errors

= The unidirectional square path experiment

Reference Wall

Reference Wall

—» Forward

ob

q |
Preprogrammed Enc)\!‘ Preprogrammed I

+ )
(;:4.:; square path, 4x4 m. .| Square path, 4x4 m. \(
By*e,) ‘\ | 87 tum instead of 90° tum |
Y (due to uncertainty about ;
\ i the effective wheelbase). |

* Curved instead of straight path p
" (due fo unequal wheel diameters). l f
\ ‘-,‘ In the example here, this causes !

|\ *a 8° orientation error. I",.
a. AL ‘/ b'F\Z“A \4/
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Forward ... L
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End
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Calibration of Errors

- Bi-directional square path experiment

Reference Wall

D

Start —» Forward ..., . r— "\
T ¥ Forward ... : A

Curved instead of strai]ght path
. (due to unequal wheel diameters).

. In the example here, this causes K?l

. a & origntation error.

: 93 turn instead of 90° turn GFH ‘
S
Q

(due to uncertainty about the |
effective wheelbase).

Preprogrammed
square path, 4x4 m.

v
.
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Calibration of Errors

Look at actual
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To Localize, Or Not To...?
- How to navigate between A and B
Navigation without hitting obstacles _,:4&
Detection of goal location B —|
C [ g;
Do you need to know where | —
ﬁ J:U you are in the map? Or can —
£ you create software that g—ﬁ
- O | does the task without that?
[l — ] )
j o Well, it depends! F
— | iy
I
D’ b 1 1. ﬁ
37 g MV
37
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Localization Summary (1)

- What is localization?
Figuring out location wrt. a model of the world

- Purely proprioceptive approaches:

- Odometry: belief about motion only
« Wheel encoders, mostly

Dead reckoning: belief about motion + heading sensors

Localization Summary (2]

- What is sensor aliasing?
Different locations giving the same sensor readings

- What is behavior-based navigation?
Navigating without localizing

4/21/20
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Behavior based navigation

= An alternative to localization

= When you see <input>, do <action>.
- Given these inputs, behave this way.

= When is this a good choice?
v’ Fast to implement
v Robust against error accumulation
v’ Effective in unchanging environment
X Does not scale to new environments
X Behaviors must be designed and debugged
X Sensor changes change behavior

40
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Behavior Based Navigation

communicate data

discover new area

detect goal position

avoid obstacles

follow right / left wall

coordination / fusion
e.g. fusion via vector summation

41
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Model Based Navigation

perception

Y

localization / map-building

Sensors )

Y

cognition / planning

Y

motion control

actuators )

42

4/21/20

20



